Biostatistics Correlation and linear regression

Burkhardt Seifert & Alois Tschopp

Biostatistics Unit University of Zurich

Correlation and linear regression

Analysis of the relation of two continuous variables (bivariate data).

Description of a non-deterministic relation between two continuous variables.

Problems:

- \bullet How are two variables x and y related?
	- (a) Relation of weight to height
	- (b) Relation between body fat and bmi
- 2 Can variable y be predicted by means of variable x ?

B.C.

By permission of Johnny Hart and Field Enterprises, Inc.

Example

- Proportion of body fat modelled by age, weight, height, bmi, waist circumference, biceps circumference, wrist circumference, total $k = 7$ explanatory variables.
- Body fat: Measure for "health", measured by "weighing under water" (complicated).
- **•** Goal: Predict body fat by means of quantities that are easier to measure.
- $n = 241$ males aged between 22 and 81.
- 11 observations of the original data set are omitted: "outliers".

Penrose, K., Nelson, A. and Fisher, A. (1985), "Generalized Body Composition Prediction Equation for Men Using Simple Measurement Techniques". Medicine and Science in Sports and Exercise, 17(2), 189.

Bivariate data

• Observation of two continuous variables (x, y) for the same observation unit

 \longrightarrow pairwise observations $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$

Example: Relation between weight and height for 241 men

Every correlation or regression analysis should begin with a scatterplot

Pearson's product-moment correlation

measures the strength of the linear relation, the linear coincidence, between x and y .

Covariance: Cov
$$
(x, y)
$$
 = s_{xy} = $\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$
\nVariances:
\n
$$
s_x^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2
$$
\n
$$
s_y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2
$$
\nCorrelation:
\n
$$
r = \frac{s_{xy}}{s_x s_y} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}
$$

Plausibility of the enumerator:

Correlation:
$$
r = \frac{s_{xy}}{s_x s_y} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}
$$

Plausibility of the denominator: r is independent of the measuring unit.

Properties:

$$
-1\leq r\leq 1
$$

- $r = 1 \rightarrow$ deterministic positive linear relation between x and y
- $r = -1$ \rightarrow deterministic negative linear relation between x and y
- $r = 0 \rightarrow$ no linear relation

In general:

- **•** Sign indicates direction of the relation
- **•** Size indicates intensity of the relation

Examples:

Example: Relation between blood serum content of Ferritin and bone marrow content of iron.

$$
r=0.72
$$

- **•** Transformation to linear relation?
- Frequently a transformation to the normal distribution helps.

Tests on linear relation

Exists a linear relation that is not caused by chance?

Scientific hypothesis: true correlation $\rho \neq 0$

Null hypothesis: true correlation $\rho = 0$

Assumptions:

- \bullet (x, y) jointly normally distributed
- **•** pairs independent

Test quantity:
$$
\boxed{T = r \sqrt{\frac{n-2}{1-r^2}} \sim t_{n-2}}
$$

Tests on linear relation

Example: Relation of weight and body height for males.

$$
n=241, \hspace{1.5cm} r=0.55
$$

 \rightarrow $T = 7.9 > t_{239,0.975} = 1.97, p < 0.0001$

Confidence interval: Uses the so called Fisher's z-transformation leading to the approximative normal distribution

 $\rho \in (0.46, 0.64)$ with probability $1 - \alpha = 0.95$

Spearman's rank correlation

Treatment of outliers?

Testing without normal distribution?

 $n = 252, r = 0.31, p < 0.0001$

Spearman's rank correlation

Idea: Similar to the Mann-Whitney test with ranks

Procedure:

- **1** Order x_1, \ldots, x_n and y_1, \ldots, y_n separately by ranks
- ² Compute the correlation for the ranks instead of for the observations

 $\rightarrow r_s = 0.52, p < 0.0001$

(correct data $(n = 241)$: $r_s = 0.55, p < 0.0001$)

Dangers when computing correlation

Number of pairs increases rapidly with the number of variables. \longrightarrow increased probability of wrong significance

- ² Spurious correlation across time (common trend) Example: Correlation of petrol price and divorce rate!
- ³ Extreme data points: outlier, "leverage points"

Dangers when computing correlation

Heterogeneity correlation (no or even opposed relation within the groups)

5 Confounding by a third variable Example: Number of storks and births in a district −→ confounder variable: district size

6 Non-linear relations (strong relation, but $r = 0 \longrightarrow$ not meaningful)

Simple linear regression

Regression analysis $=$ statistical analysis of the effect of one variable on others

−→ directed relation

 $x =$ independent variable, explanatory variable, predictor (often not by chance: time, age, measurement point)

 $y =$ dependent variable, outcome, response

Goal:

Do not only determine the strength and direction (\nearrow, \searrow) of the relation, but define a quantitative law (how does y change when x is changed).

Simple linear regression

 $y = -99.66 + 1.01 x$, $r^2 = 0.31$, $p < 0.0001$

 \Rightarrow Body height is no good measurement for overweight

How heavy are males? $\bar{y} = 80.7$ kg, $SD = s_v = 11.8$ kg How heavy are males of size 175 cm? $\hat{y} = -99.66 + 1.01 \times 175 = 77.0$ kg, $s_e = 9.9$ kg Master of Science in Medical Biology 17

Simple linear regression

 $y = 19.2 + 0.034 \times, \quad r^2 = 0.005, \quad p = 0.27$

 \Rightarrow The bmi does not depend on body height and is therefore a better measurement for overweight

How heavy are males? $\bar{y} = 25.2$ kg/m², SD $= s_{\rm y} = 3.1$ kg/m²

How heavy are males of size 175 cm?
\n
$$
\hat{y} = 19.2 + 0.034 \times 175 = 25.1 \text{ kg/m}^2, s_e = 3.1 \text{ kg/m}^2
$$

Statistical model for regression

$$
y_i = f(x_i) + \varepsilon_i \quad i = 1, \ldots, n
$$

 $f =$ regression function; implies relation $x \mapsto y$; true course

- ε_i = unobservable, random variations (error; noise)
	- ε_i independent
	- mean (ε_{i}) $\!=$ $\,$ 0, variance (ε_{i}) $\!=$ σ^{2} \leftarrow constant
	- For tests and confidence intervals: ε_i normally distributed $\mathcal{N}(0, \sigma^2)$

Important special case: linear regression

$$
f(x)=a+bx
$$

To determine ("estimate"): $a =$ intercept, $b =$ slope

Statistical model for regression

Example: Both percental body fat and bmi are measurements for overweight of males, but only bmi is easy to measure.

 10 20 30 40 ● ● ● ● ● $\overline{\mathrm{30}}$ ● ● \bullet . . . ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 。
タ ● ● ● ● ● Regression: ● ● ● ● **。**
第二 ● ● ● ● ● ● ● bodyfat ● ● ● ● ● ● ● ● ● ● ● ● ● ● \overline{a} ● ● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● $y =$ body fat (in %), ● ● ● ● ● ● ● ● ●● $x = b$ mi (in kg/m²) ●● ● ● $\frac{1}{2}$ ●● ● ● ● ● ● ● ● ● ● ● ●● 15 20 25 30 35 40 bmi $y = -27.6 + 1.84 x$, $r^2 = 0.52$, $p < 0.0001$

Interpretations:

- Men with a bmi of 25 kg/m² have 18% body fat on average.
- Men with an about 1 kg/m^2 increased bmi have 2% more body fat on average.

Method of least squares

Choose parameter estimator, so that
\n
$$
S(\hat{a}, \hat{b}) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2
$$
 is minimized

$$
\longrightarrow \text{Slope: } \hat{b} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = r \frac{s_y}{s_x}; \quad \text{Intercept: } \hat{a} = \bar{y} - \hat{b}\bar{x}
$$

\clubsuit Derivation of the formulas for \hat{a} and \hat{b}

New parameterisation: $y - \overline{y} = \alpha + \beta(x - \overline{x})$

$$
\begin{array}{rcl}\n\longrightarrow a & = & \alpha + \bar{y} - \beta \bar{x} \\
b & = & \beta\n\end{array}
$$
\n
$$
S(\alpha, \beta) = \sum_{i=1}^{n} \left\{ (y_i - \bar{y}) - \alpha - \beta (x_i - \bar{x}) \right\}^2
$$

S is a quadratic function in (α, β)

- \bullet S has a unique minimum if there are at least two different values x_i .
- **•** set the partial derivations equal to zero:

$$
\frac{\partial S}{\partial \alpha} = 2 \sum \left\{ (y_i - \bar{y}) - \alpha - \beta (x_i - \bar{x}) \right\} \{-1\} = 0
$$

$$
\frac{\partial S}{\partial \beta} = 2 \sum \left\{ (y_i - \bar{y}) - \alpha - \beta (x_i - \bar{x}) \right\} \{- (x_i - \bar{x})\} = 0
$$

\clubsuit Derivation of the formulas for \hat{a} and \hat{b}

−→ Normal equations:

$$
\alpha n + \beta \sum (x_i - \bar{x}) = \sum (y_i - \bar{y}) = 0
$$

$$
\alpha \sum (x_i - \bar{x}) + \beta \sum (x_i - \bar{x})^2 = \sum (x_i - \bar{x})(y_i - \bar{y})
$$

→ Solution:

$$
\hat{\alpha} = 0
$$

$$
\hat{\beta} = \frac{s_{xy}}{s_x^2} = r \frac{s_y}{s_x}
$$

$$
\hat{b} = \hat{\beta} = r \frac{s_y}{s_x}
$$

$$
\hat{a} = \bar{y} - \hat{b}\bar{x}
$$

very intuitive regression equation: $\hat{y} = \bar{y} + \hat{b}(x - \bar{x})$ Master of Science in Medical Biology 23

Variance explained by regression

Question: How relevant is regression on x for y ? Statistically: How much variance of y is explained by the regression line, i.e. knowledge of x ?

bmi

Variance explained by regression

Decomposition of the variance by regression:

$$
\underbrace{y_i - \bar{y}}_{\text{observed}} = \underbrace{\left\{\hat{b}(x_i - \bar{x})\right\}}_{\text{explained}} + \underbrace{\left\{y_i - \bar{y} - \hat{b}(x_i - \bar{x})\right\}}_{\text{rest}}
$$

Square, sum up and divide by $(n - 1)$:

$$
s_y^2 = \hat{b}^2 s_x^2 + s_{\text{res}}^2
$$

mixed term \hat{b} $\mathsf{s}_{\mathsf{x}, \mathsf{res}}$ disappears.

Variance explained by regression

"Explained" variance $\hat{b}^2 s_x^2$:

$$
s_{\text{reg}}^2 = \hat{b}^2 s_x^2 = \left(r \frac{s_y}{s_x}\right)^2 s_x^2 = r^2 s_y^2
$$

 $r^2 = \frac{s_{\text{reg}}^2}{r^2}$ s_y^2 $=$ proportion of variance of y that is explained by x .

Residual variance: Variance that remains

$$
s_{\text{res}}^2 = (1 - r^2) s_y^2
$$
, $\hat{\sigma}^2 = s_e^2 = \frac{1}{n-2} \sum e_i^2 = \frac{n-1}{n-2} s_{\text{res}}^2$

Observations vary around the regression line with standard deviation

$$
s_{\text{res}} = \sqrt{1 - r^2} s_y
$$
\n
$$
r = \sqrt{1 - r^2} \quad 0.3 \quad 0.5 \quad 0.7 \quad 0.9 \quad 0.99
$$
\n
$$
s_{\text{res}}/s_y = \sqrt{1 - r^2} \quad 0.95 \quad 0.87 \quad 0.71 \quad 0.44 \quad 0.14
$$
\n
$$
Gain = 1 - \sqrt{1 - r^2} \quad 5\% \quad 13\% \quad 29\% \quad 56\% \quad 86\%
$$

Gain of the regression

• How heavy are males on average?

Classical quantities: $\bar{y} = 80.7$ and $s_v = 11.8$

⇒ Estimator: 80.7 kg

 \Rightarrow Approx. 95% of the males weigh between 80.7 \pm 2 \times 11.8 kg, i.e. between 57.1 and 104.3 kg

• How heavy are males of 175 cm on average?

Regression: $\bar{v} = -99.7 + 1.01 \times$ and $s_{res} = 9.8$

 \Rightarrow Estimator: -99.7 + 1.01 × 175 = 77.0 kg

 \Rightarrow Approx. 95% of the males of 175 cm weigh between 77.0 \pm 2 \times 9.8 kg, i.e. between 57.4 and 96.6 kg

The regression model provides better estimators and a smaller confidence interval.

Gain:
$$
1 - s_{res}/s_y = 1 - 9.8/11.8 = 17\%
$$
 (*r* = 0.56)

Gain of the regression

Is there a relation at all?

Scientific hypothesis: y changes with x ($b \neq 0$)

Null hypothesis: $b = 0$

if (x, y) normally distributed \rightarrow same test as for correlation $\rho = 0$ (t-distribution)

In regression analysis:

• all analyses conditional on given values x_1, \ldots, x_n : ε_{i} independent $\mathcal{N}(0,\sigma^{2})$

 \rightarrow simpler than analyses of correlation \longrightarrow distribution of x negligible

•
$$
\hat{b} \sim \mathcal{N}(b, SE(\hat{b}))
$$
, $SE(\hat{b}) = \frac{\sigma}{s_x \sqrt{n-1}}$

Gain of the regression

Test quantity:

$$
T = \hat{b} \frac{s_x \sqrt{n-1}}{\hat{\sigma}} \sim t_{n-2}
$$

Comment:
$$
\hat{\sigma}^2 = \frac{n-1}{n-2} (1 - r^2) s_y^2
$$
, $\hat{b} = r \frac{s_y}{s_x} \longrightarrow T = r \sqrt{\frac{n-2}{1-r^2}}$

Example: Body fat in dependence on bmi for 241 males.

Results R:

 $r^2 = 0.52$

$$
\longrightarrow s_{\text{res}}/s_y = \sqrt{1 - 0.52} = 0.69 \longrightarrow \text{Gain: } 31\%
$$

Again conditional on the given values x_1, \ldots, x_n

Confidence interval for the regression line

Consider the alternative parameterisation: $\hat{v} = \bar{v} + \hat{b}(x - \bar{x})$

- \bullet The variances sum up since \bar{v} and \hat{b} are independent.
- \longrightarrow (1 α)–confidence interval for the value of the regression line $y(x^*)$ at $x = x^*$:

$$
\hat{a} + \hat{b}x^* \pm t_{1-\alpha/2} \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{s_x^2(n-1)}}
$$

Prediction interval for y

Future observation y^* at $x = x^*$

$$
y^* = \hat{y}(x^*) + \varepsilon
$$

→ $(1 - \alpha)$ -prediction interval for $y(x^*)$:

$$
\hat{a} + \hat{b}x^* \pm t_{1-\alpha/2} \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{s_x^2(n-1)}}
$$

Prediction interval is much wider than the confidence interval Master of Science in Medical Biology 32

Multiple regression

Topics:

- Regression with several independent variables
	- Least squares estimation
	- Multiple coefficient of determination
	- Multiple and partial correlation
- Variable selection
- **•** Residual analysis
	- Diagnostic possibilities

Multiple regression

Reasons for multiple regression analysis:

¹ Eliminate potential effects of confounding variables in a study with one influencing variable.

Example: A frequent confounder is age: $y =$ blood pressure, x_1 = dose of antihypertensives, x_2 = age.

2 Investigate potential prognostic factors of which we are not sure whether they are important or redundant.

Example: $y =$ stenosis, $x_1 =$ HDL, $x_2 =$ LDL, $x_3 =$ bmi, $x_4 =$ smoking, $x_5 = \text{triglyceride}$.

- ³ Develop formulas for predictions based on explanatory variables. Example: $y =$ adult height, $x_1 =$ height as child, $x_2 =$ height of the mother, x_3 = height of the father.
- \bullet Study the influence of a variable x_1 on a variable y taking into account the influence of further variables x_2, \ldots, x_k .

Number of observed males: $n = 241$

Dependent variable: bodyfat $=$ percental body fat

We are interested in the influence of three independent variables:

- bmi in kg/m².
- waist circumference (abdomen) in cm.
- \bullet waist/hip-ratio.

Results of the univariate analyses of bodyfat based on bmi, abdomen and waist/hip-ratio with R:

Example: Prognostic factors for body fat

		Estimate Std. Error t value $Pr(> t)$		
(Intercept)	-27.617	2.939	-9.398	0.000
hmi	1.844	0.116	15.957	0.000

BMI: $R^2 = 0.516$, $R^2_{\text{adj}} = 0.514$

Abdomen: $R^2 = 0.661$, $R^2_{\mathrm{adj}} = 0.659$

Waist/hip-ratio: $R^2=0.583$, $R^2_{\sf adj}=0.581$

Pairwise-scatterplots:

Multiple regression:

$$
R^2 = 0.681, R^2_{\text{adj}} = 0.677
$$

Elimination of the non-significant variable bmi:

$$
R^2=0.680,\ R^2_{\text{adj}}=0.678
$$

In general:

 $y = a + b_1$ $x_1 + b_2$ $x_2 + ... + \varepsilon$ Estimation: ↓ ↓ ↓ ↓ ↓ bodyfat = $-59.3 + 0.484$ abdomen + 36.46 waist/hip-ratio

Statistical model

 $y_i = a + b_1 x_{1i} + b_2 x_{2i} + \ldots + b_k x_{ki} + \varepsilon_i \quad i = 1, \ldots, n$

 $a + b_1 x_1 + b_2 x_2 + \ldots + b_k x_k =$ regression function, response surface

- ε_i = unobserved, random noise
	- **·** independent

•
$$
E(\varepsilon_i) = 0
$$
, $Var(\varepsilon_i) = \sigma^2 \leftarrow \text{constant}$

Procedure as in the case of the simple linear regression:

Least squares method:

$$
prediction: \hat{y}_i = \hat{a} + \hat{b}_1 x_{1i} + \ldots + \hat{b}_k x_{ki}
$$

Choose estimation of the parameters, so that

$$
S(\hat{a}, \hat{b}_1, \ldots, \hat{b}_k) = \sum_{i=1}^n (y_i - \hat{y}_i)^2
$$
 is minimized!

Set partial derivatives equal to zero \rightarrow normal equations.

Statistical model

For a clear illustration use a matrix formulation:

$$
\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \quad \mathbf{X} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1k} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n1} & \cdots & x_{nk} \end{pmatrix}
$$

$$
\varepsilon = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} a \\ b_1 \\ \vdots \\ b_k \end{pmatrix}
$$

 \rightarrow Statistical model: $y = Xb + \varepsilon$

Normal equations (for a, b_1, \ldots, b_k):

$$
\mathbf{X}'\mathbf{X}\,\mathbf{b}=\mathbf{X}'\mathbf{y}
$$

Remember: centered formulation for the simple linear regression:

$$
\sum (x_i - \bar{x})^2 b = \sum (x_i - \bar{x})(y_i - \bar{y})
$$

Generalisation of the correlation

Instead of one correlation we get a correlation matrix.

Here the pairwise correlations are shown below the diagonal and the p–values above.

Generalisation of the correlation

How strong is the multiple linear relation?

Multiple coefficient of determination

$$
R^2 = \frac{s_{\text{reg}}^2}{s_y^2} = \frac{\text{explained variance}}{\text{variance of } y} = 1 - \frac{s_{\text{res}}^2}{s_y^2}
$$

Comment: $R^2 = (r_{y\hat{y}})^2$ $r_{\rm v\hat{v}}$ is called multiple correlation coefficient = correlation between y and best linear combination of x_1, \ldots, x_k

Remember: R^2 is a measure for the goodness of a prediction:

- observations scatter around \bar{y} with SD = s_v
- observations scatter around the prediction value \hat{y} with $\mathsf{s}_\mathrm{res} = \sqrt{1 - R^2} \, \mathsf{s}_\mathrm{y} \leq \mathsf{s}_\mathrm{y}$

Generalisation of the correlation

Example:
$$
s_{\text{bodyfat}} = 8.0
$$
, $R^2 = 0.68$
 $\longrightarrow s_{\text{res}} = \sqrt{1 - 0.68} \times 8.0 = 4.5$

Warning: R^2 does not provide an unbiased estimation of the proportion of expected variance explained by regression (too optimistic).

Unbiased estimation of the residual variance:

$$
\hat{\sigma}^2 = \frac{1}{n-k-1} \sum_{i=1}^n e_i^2 = \frac{n-1}{n-k-1} s_{\text{res}}^2
$$

Unbiased estimation of the proportion of explained variance.

$$
R_{\text{adj}}^2 = 1 - \frac{\hat{\sigma}^2}{s_y^2}
$$

Correlation coefficient between two variables whereby the remaining variables are kept constant.

 \rightarrow Comparable statement as multiple regression coefficient

A is a "confounder" for the relation of B to C

♣ Partial correlation

Example: Relation of body fat proportion and weight for males. $A =$ abdomen, $B =$ body fat, $C =$ weight:

$$
r_{AB} = 0.81,
$$
 $r_{AC} = 0.86,$ $r_{BC} = 0.60$

Are body fat proportion and weight related?

$$
r_{BC.A} = \frac{r_{BC} - r_{AB}r_{AC}}{\sqrt{(1 - r_{AB}^2)(1 - r_{AC}^2)}} = -0.35
$$

 \rightarrow the sign of the correlation switches when the waist circumference is known.

Examination of hypotheses

(Null) hypotheses:

- There is no relation at all between (x_1, \ldots, x_k) and y.
- A certain independent variable has no influence.
- A group of independent variables has no influence.
- The relation is linear and not quadratic.
- The influence of the independent variables is additive.

Condition: ε_i normally distributed

Linear hypotheses \longrightarrow F-tests

Examination of hypotheses

Example:

Null hypothesis: true multiple correlation $R = 0$ (no relation at all).

Test quantity

$$
T = \frac{R^2 (n - k - 1)}{1 - R^2} \sim F_{1, n - k - 1}
$$

(Generalisation of the simple, linear case, since $F_{1,m}=t_m^2)$

♣ Variable selection

- Aspects:
	- simple model (without inessential variables)
	- include important variables
	- high prediction power
	- reproducibility of the results
- **•** Procedure:
	- stepwise procedure
		- \star forward
		- \star backward
		- \star stepwise
	- "best subset selection"
- Problem:
	- multi-collinearity −→ instability

♣ Variable selection

Stepwise procedures: stepwise, forward, backward

- Dependent variable: $y =$ bodyfat
- Independent variables: $x = age$, weight, body height, 10 body circumference measures, waist-hip ratio.

forward ($p = 0.05$)

backward: same result

Common model:

 $bodyfat = constant + abdomen + weight + wrist + error$ Master of Science in Medical Biology 50

Keep in mind:

- The model of the multiple linear regression should be assessed according to the meaning and significance of the prediction variables and according to the proportion of explained variance R_{adj}^2 .
- Stepwise p-values \rightarrow significance
- \bullet If the forecast is important use AIC, GCV, BIC, \dots

Residual analysis

Examination of the assumptions of the regression analysis:

- outliers, non-normal distribution
- influential observations, leverage points
- unequal variances
- non-linearity
- dependent observations
- graphical methods \longleftrightarrow tests

Keep in mind:

There is no universally valid procedure for the examination of the assumptions of the regression analysis!

Residuals

Residual

observation - predicted value

Standardized residual

residual sample standard deviation of the residuals

Residuals

Standardized residuals should be within −2 and 2. There should be no specific patterns.

Otherwise, check for

- **o** outliers
- **o** unequal variances
- non-normal distribution
- **o** non-linearity
- **•** important variable not included in the model

Remember:

"Pattern" should be interpretable in respect of contents and should be significant.

 \longrightarrow Non-parametric procedures

Variance stability

Plot squared standardized residuals against predicted target quantity.

 H_0 : Spearman's rank correlation coefficient = 0 \rightarrow p = 0.19

Contraindications

- **o** dependent measurements (e.g. for one person) Solution: Repeated-measures analysis
- variability dependent on measurement Solution:
	- **1** transformation
	- ² weighted least-squares estimation
- **•** skewed distribution Solution:

- 2 robust regression
- **•** non-linear relation Solution:

- **1** transformation
- 2 non-linear regression

Non-linear and non-parametric regression

Non-linear regression:

Special case polynomial regression

 $=$ multiple linear regression independent variable $(x-\bar{x}),(x-\bar{x})^2,\ldots,(x-\bar{x})^k$

Non-parametric regression:

- **•** smoothing splines
- Gasser-Müller kernel estimator
- **.** local linear estimator (LOWESS, LOESS)

Non-linear and non-parametric regression

Example: Growth data in form of increments

Polynomial 4. order: $R^2_\mathrm{adj} = 0.76$ Polynomial 9. order: $R^2_\mathrm{adj} = 0.93$

Non-linear and non-parametric regression

• Preece-Baines Modell (1978):

$$
f(x) = a - \frac{4(a - f(b))}{[\exp\{c(x - b)\} + \exp\{d(x - b)\}][1 + \exp\{e(x - b)\}]}
$$

- for increments the derivative is required.
- \bullet Gasser–Müller kernel estimator:

Alter Non-parametric regression reflects dynamics and is better than the non-linear and polynomial regression.