# Biostatistics Correlation and linear regression

Burkhardt Seifert & Alois Tschopp

Biostatistics Unit University of Zurich

# Correlation and linear regression

Analysis of the relation of two continuous variables (bivariate data).

Description of a non-deterministic relation between two continuous variables.

Problems:

- How are two variables x and y related?
  - (a) Relation of weight to height
  - (b) Relation between body fat and bmi
- 2 Can variable y be predicted by means of variable x?

B.C.





By permission of Johnny Hart and Field Enterprises, Inc.

# Example

- Proportion of body fat modelled by age, weight, height, bmi, waist circumference, biceps circumference, wrist circumference, total k = 7 explanatory variables.
- Body fat: Measure for "health", measured by "weighing under water" (complicated).
- Goal: Predict body fat by means of quantities that are easier to measure.
- n = 241 males aged between 22 and 81.
- 11 observations of the original data set are omitted: "outliers".

Penrose, K., Nelson, A. and Fisher, A. (1985), "Generalized Body Composition Prediction Equation for Men Using Simple Measurement Techniques". Medicine and Science in Sports and Exercise, **17**(2), 189.

## Bivariate data

• Observation of two continuous variables (x, y) for the same observation unit

 $\longrightarrow$  pairwise observations  $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ 

Example: Relation between weight and height for 241 men

 Every correlation or regression analysis should begin with a scatterplot



Pearson's product-moment correlation

• measures the strength of the linear relation, the linear coincidence, between x and y.

Covariance: 
$$Cov(x, y) = s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$
  
Variances:  $s_x^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$   
 $s_y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2$   
Correlation:  $r = \frac{s_{xy}}{s_x s_y} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$ 

Plausibility of the enumerator:

Forrelation: 
$$r = \frac{s_{xy}}{s_x s_y} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$$



#### Plausibility of the denominator: *r* is independent of the measuring unit.

#### Properties:

$$-1 \le r \le 1$$

- $r = 1 \longrightarrow$  deterministic positive linear relation between x and y
- $r=-1 \quad 
  ightarrow$  deterministic negative linear relation between x and y
- $r = 0 \longrightarrow$  no linear relation

#### In general:

- Sign indicates direction of the relation
- Size indicates intensity of the relation

#### Examples:



Example: Relation between blood serum content of Ferritin and bone marrow content of iron.



- Transformation to linear relation?
- Frequently a transformation to the normal distribution helps.

### Tests on linear relation

Exists a linear relation that is not caused by chance?

Scientific hypothesis: true correlation  $\rho \neq 0$ 

Null hypothesis: true correlation  $\rho = 0$ 

Assumptions:

- (x, y) jointly normally distributed
- pairs independent

Test quantity: 
$$T = r \sqrt{\frac{n-2}{1-r^2}} \sim t_{n-2}$$

### Tests on linear relation

Example: Relation of weight and body height for males.

$$n = 241,$$
  $r = 0.55$   
 $\longrightarrow T = 7.9 > t_{239,0.975} = 1.97, p < 0.0001$ 

Confidence interval: Uses the so called Fisher's *z*-transformation leading to the approximative normal distribution

 $ho \in (0.46, 0.64)$  with probability 1 - lpha = 0.95

## Spearman's rank correlation

Treatment of outliers?

Testing without normal distribution?



## Spearman's rank correlation

Idea: Similar to the Mann-Whitney test with ranks

#### Procedure:

• Order  $x_1, \ldots, x_n$  and  $y_1, \ldots, y_n$  separately by ranks

Output the correlation for the ranks instead of for the observations

 $\longrightarrow$   $r_s = 0.52, p < 0.0001$ 

(correct data (n = 241) :  $r_s = 0.55, p < 0.0001$ )

## Dangers when computing correlation

| (problem of multiple t | esting) |      |      |      |
|------------------------|---------|------|------|------|
| Nb of variables        | 2       | 3    | 5    | 10   |
| Nb of correlations     | 1       | 3    | 10   | 45   |
| P(wrong signif.)       | 0.05    | 0.14 | 0.40 | 0.91 |

Number of pairs increases rapidly with the number of variables.  $\longrightarrow$  increased probability of wrong significance

- Spurious correlation across time (common trend)
   Example: Correlation of petrol price and divorce rate!
- S Extreme data points: outlier, "leverage points"

## Dangers when computing correlation

 Heterogeneity correlation (no or even opposed relation within the groups)



Confounding by a third variable
 Example: Number of storks and births in a district
 —> confounder variable: district size

Non-linear relations (strong relation, but r = 0 → not meaningful)



## Simple linear regression

 $\label{eq:Regression} \mbox{Regression analysis} = \mbox{statistical analysis of the effect of one variable} \\ \mbox{on others} \\$ 

 $\longrightarrow$  directed relation

 x = independent variable, explanatory variable, predictor (often not by chance: time, age, measurement point)

y = dependent variable, outcome, response

#### Goal:

Do not only determine the strength and direction  $(\nearrow, \searrow)$  of the relation, but define a quantitative law (how does y change when x is changed).

## Simple linear regression



y = -99.66 + 1.01 x,  $r^2 = 0.31$ , p < 0.0001

 $\Rightarrow$  Body height is no good measurement for overweight

How heavy are males?  $\bar{y} = 80.7$  kg, SD=  $s_y = 11.8$  kg How heavy are males of size 175 cm?  $\hat{y} = -99.66 + 1.01 \times 175 = 77.0$  kg,  $s_e = 9.9$  kg

## Simple linear regression



y = 19.2 + 0.034 x,  $r^2 = 0.005$ , p = 0.27

⇒ The bmi does not depend on body height and is therefore a better measurement for overweight

How heavy are males?  $\bar{y} = 25.2 \text{ kg/m}^2$ , SD=  $s_y = 3.1 \text{ kg/m}^2$ 

How heavy are males of size 175 cm?  $\hat{y} = 19.2 + 0.034 \times 175 = 25.1 \text{ kg/m}^2 \text{, } s_e = 3.1 \text{ kg/m}^2$ 

Statistical model for regression

$$y_i = f(x_i) + \varepsilon_i$$
  $i = 1, \ldots, n$ 

f = regression function; implies relation  $x \mapsto y$ ; true course

- $\varepsilon_i$  = unobservable, random variations (error; noise)
  - $\varepsilon_i$  independent
  - mean( $\varepsilon_i$ )= 0, variance( $\varepsilon_i$ ) =  $\sigma^2 \leftarrow \text{constant}$
  - For tests and confidence intervals:  $\varepsilon_i$  normally distributed  $\mathcal{N}(\mathbf{0},\sigma^2)$

Important special case: linear regression

$$f(x) = a + bx$$

To determine ("estimate"): a = intercept, b = slope

## Statistical model for regression

Example: Both percental body fat and bmi are measurements for overweight of males, but only bmi is easy to measure.



Interpretations:

- $\bullet\,$  Men with a bmi of 25 kg/m  $^2$  have 18% body fat on average.
- Men with an about 1  $\rm kg/m^2$  increased bmi have 2% more body fat on average.

## Method of least squares



Choose parameter estimator, so that 
$$S(\hat{a}, \hat{b}) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 is minimized

$$\longrightarrow \text{Slope:} \ \hat{b} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = r \frac{s_y}{s_x}; \quad \text{Intercept:} \ \hat{a} = \bar{y} - \hat{b} \, \bar{x}$$

# **♣** Derivation of the formulas for $\hat{a}$ and $\hat{b}$

New parameterisation:  $y - \bar{y} = \alpha + \beta(x - \bar{x})$ 

S is a quadratic function in  $(\alpha, \beta)$ 

- *S* has a unique minimum if there are at least two different values *x<sub>i</sub>*.
- set the partial derivations equal to zero:

$$\frac{\partial S}{\partial \alpha} = 2 \sum \{ (y_i - \bar{y}) - \alpha - \beta(x_i - \bar{x}) \} \{ -1 \} = 0$$
  
$$\frac{\partial S}{\partial \beta} = 2 \sum \{ (y_i - \bar{y}) - \alpha - \beta(x_i - \bar{x}) \} \{ -(x_i - \bar{x}) \} = 0$$

# $\clubsuit$ Derivation of the formulas for $\hat{a}$ and $\hat{b}$

 $\longrightarrow$  Normal equations:

$$\alpha n + \beta \sum (x_i - \bar{x}) = \sum (y_i - \bar{y}) = 0$$
  
$$\alpha \sum (x_i - \bar{x}) + \beta \sum (x_i - \bar{x})^2 = \sum (x_i - \bar{x})(y_i - \bar{y})$$

 $\longrightarrow$  Solution:

$$\hat{\alpha} = 0$$
$$\hat{\beta} = \frac{s_{xy}}{s_x^2} = r \frac{s_y}{s_x}$$

$$\hat{b} = \hat{\beta} = r \frac{s_y}{s_x}$$
  
 $\hat{a} = \bar{y} - \hat{b}\bar{x}$ 

very intuitive regression equation:  $\hat{y} = ar{y} + \hat{b}(x - ar{x})$ Master of Science in Medical Biology

## Variance explained by regression

Question: How relevant is regression on x for y? Statistically: How much variance of y is explained by the regression line, i.e. knowledge of x?



bmi

## Variance explained by regression

Decomposition of the variance by regression:

$$\underbrace{\underbrace{y_i - \overline{y}}_{i \to \overline{x}}}_{\text{observed}} = \underbrace{\left\{ \widehat{b}(x_i - \overline{x}) \right\}}_{\text{explained}} + \underbrace{\left\{ y_i - \overline{y} - \widehat{b}(x_i - \overline{x}) \right\}}_{\text{rest}}$$

Square, sum up and divide by (n-1):

$$s_y^2 = \hat{b}^2 s_x^2 + s_{\rm res}^2$$

mixed term  $\hat{b} s_{x,res}$  disappears.

## Variance explained by regression

"Explained" variance  $\hat{b}^2 s_x^2$ :

$$s_{\text{reg}}^2 = \hat{b}^2 s_x^2 = \left(r \frac{s_y}{s_x}\right)^2 s_x^2 = r^2 s_y^2$$

 $r^2 = \frac{s_{reg}^2}{s_y^2}$  = proportion of variance of y that is explained by x.

Residual variance: Variance that remains

$$s_{\rm res}^2 = (1 - r^2) s_y^2, \qquad \hat{\sigma}^2 = s_e^2 = \frac{1}{n-2} \sum e_i^2 = \frac{n-1}{n-2} s_{\rm res}^2$$

Observations vary around the regression line with standard deviation

$$s_{\rm res} = \sqrt{1 - r^2} s_y$$

$$r = \sqrt{1 - r^2} 0.3 \quad 0.5 \quad 0.7 \quad 0.9 \quad 0.99$$

$$s_{\rm res}/s_y = \sqrt{1 - r^2} \quad 0.95 \quad 0.87 \quad 0.71 \quad 0.44 \quad 0.14$$

$$Gain = 1 - \sqrt{1 - r^2} \quad 5\% \quad 13\% \quad 29\% \quad 56\% \quad 86\%$$

## Gain of the regression

• How heavy are males on average?

Classical quantities:  $\bar{y} = 80.7$  and  $s_y = 11.8$ 

 $\Rightarrow$  Estimator: 80.7 kg

 $\Rightarrow$  Approx. 95% of the males weigh between 80.7  $\pm$  2  $\times$  11.8 kg, i.e. between 57.1 and 104.3 kg

• How heavy are males of 175 cm on average?

Regression:  $\bar{y} = -99.7 + 1.01 \text{ x}$  and  $s_{res} = 9.8$ 

 $\Rightarrow$  Estimator: -99.7 + 1.01 × 175 = 77.0 kg

 $\Rightarrow$  Approx. 95% of the males of 175 cm weigh between 77.0  $\pm$  2  $\times$  9.8 kg, i.e. between 57.4 and 96.6 kg

The regression model provides better estimators and a smaller confidence interval.

Gain: 
$$1 - s_{res}/s_y = 1 - 9.8/11.8 = 17\%$$
 (r = 0.56)

# Gain of the regression

Is there a relation at all?

Scientific hypothesis: *y* changes with  $x \ (b \neq 0)$ 

Null hypothesis: b = 0

if (x, y) normally distributed  $\longrightarrow$  same test as for correlation  $\rho = 0$  (t-distribution)

In regression analysis:

• all analyses conditional on given values  $x_1, \ldots, x_n$ :  $\varepsilon_i$  independent  $\mathcal{N}(0, \sigma^2)$ 

 $\longrightarrow$  simpler than analyses of correlation

 $\longrightarrow$  distribution of x negligible

• 
$$\hat{b} \sim \mathcal{N}(b, SE(\hat{b})), \qquad SE(\hat{b}) = \frac{\sigma}{s_x \sqrt{n-1}}$$

## Gain of the regression

Test quantity:

$$T = \hat{b} \, \frac{s_x \sqrt{n-1}}{\hat{\sigma}} \, \sim t_{n-2}$$

Comment: 
$$\hat{\sigma}^2 = \frac{n-1}{n-2} (1-r^2) s_y^2$$
,  $\hat{b} = r \frac{s_y}{s_x} \longrightarrow T = r \sqrt{\frac{n-2}{1-r^2}}$ 

Example: Body fat in dependence on bmi for 241 males.

Results R:

|             | Estimate | Std. Error | t value | Pr(> t ) |
|-------------|----------|------------|---------|----------|
| (Intercept) | -27.617  | 2.939      | -9.398  | 0.000    |
| bmi         | 1.844    | 0.116      | 15.957  | 0.000    |

 $r^2 = 0.52$ 

$$\longrightarrow s_{\rm res}/s_y = \sqrt{1 - 0.52} = 0.69 \longrightarrow$$
 Gain: 31%



#### Again conditional on the given values $x_1, \ldots, x_n$



#### Confidence interval for the regression line

Consider the alternative parameterisation:  $\hat{y} = \bar{y} + \hat{b}(x - \bar{x})$ 

- The variances sum up since  $\bar{y}$  and  $\hat{b}$  are independent.
- $\longrightarrow$   $(1 \alpha)$ -confidence interval for the value of the regression line  $y(x^*)$  at  $x = x^*$ :

$$\hat{a} + \hat{b} x^* \pm t_{1-\alpha/2} \,\hat{\sigma} \,\sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{s_x^2(n-1)}}$$



bmi

### Prediction interval for y

Future observation  $y^*$  at  $x = x^*$ 

$$y^{\star} = \hat{y}(x^{\star}) + \varepsilon$$

 $\longrightarrow$  (1 -  $\alpha$ )-prediction interval for  $y(x^*)$ :





• Prediction interval is much wider than the confidence interval Master of Science in Medical Biology

# Multiple regression

#### Topics:

- Regression with several independent variables
  - Least squares estimation
  - Multiple coefficient of determination
  - Multiple and partial correlation
- Variable selection
- Residual analysis
  - Diagnostic possibilities

## Multiple regression

Reasons for multiple regression analysis:

Eliminate potential effects of confounding variables in a study with one influencing variable.

Example: A frequent confounder is age: y = blood pressure,  $x_1 =$  dose of antihypertensives,  $x_2 =$  age.

Investigate potential prognostic factors of which we are not sure whether they are important or redundant.

Example: y = stenosis,  $x_1 = \text{HDL}$ ,  $x_2 = \text{LDL}$ ,  $x_3 = \text{bmi}$ ,  $x_4 = \text{smoking}$ ,  $x_5 = \text{triglyceride}$ .

- Develop formulas for predictions based on explanatory variables.
   Example: y = adult height, x<sub>1</sub> = height as child, x<sub>2</sub> = height of the mother, x<sub>3</sub> = height of the father.
- Study the influence of a variable x<sub>1</sub> on a variable y taking into account the influence of further variables x<sub>2</sub>,..., x<sub>k</sub>.

Number of observed males: n = 241

Dependent variable: bodyfat = percental body fat

We are interested in the influence of three independent variables:

- bmi in  $kg/m^2$ .
- waist circumference (abdomen) in cm.
- waist/hip-ratio.

Results of the univariate analyses of bodyfat based on bmi, abdomen and waist/hip-ratio with R:

Example: Prognostic factors for body fat

|             | Estimate | Std. Error | t value | Pr(> t ) |
|-------------|----------|------------|---------|----------|
| (Intercept) | -27.617  | 2.939      | -9.398  | 0.000    |
| bmi         | 1.844    | 0.116      | 15.957  | 0.000    |

BMI:  $R^2 = 0.516$ ,  $R^2_{adj} = 0.514$ 

|             | Estimate | Std. Error | t value | $\Pr(> t )$ |
|-------------|----------|------------|---------|-------------|
| (Intercept) | -42.621  | 2.869      | -14.855 | 0.000       |
| abdomen     | 0.668    | 0.031      | 21.570  | 0.000       |

Abdomen:  $R^2 = 0.661$ ,  $R^2_{adj} = 0.659$ 

|                 | Estimate | Std. Error | t value | $\Pr(> t )$ |
|-----------------|----------|------------|---------|-------------|
| (Intercept)     | -78.066  | 5.318      | -14.680 | 0.000       |
| waist_hip_ratio | 104.976  | 5.744      | 18.275  | 0.000       |

Waist/hip-ratio:  $R^2 = 0.583$ ,  $R^2_{adj} = 0.581$ 

#### Pairwise-scatterplots:



Multiple regression:

|                 | Estimate | Std. Error | t value | $\Pr(> t )$ |
|-----------------|----------|------------|---------|-------------|
| (Intercept)     | -60.045  | 5.365      | -11.192 | 0.000       |
| bmi             | 0.123    | 0.236      | 0.519   | 0.605       |
| abdomen         | 0.438    | 0.105      | 4.183   | 0.000       |
| waist_hip_ratio | 38.468   | 10.262     | 3.749   | 0.000       |

$$R^2 = 0.681, R^2_{adj} = 0.677$$

Elimination of the non-significant variable bmi:

|                 | Estimate | Std. Error | t value | $\Pr(> t )$ |
|-----------------|----------|------------|---------|-------------|
| (Intercept)     | -59.294  | 5.158      | -11.496 | 0.000       |
| abdomen         | 0.484    | 0.057      | 8.526   | 0.000       |
| waist_hip_ratio | 36.455   | 9.486      | 3.843   | 0.000       |

$$R^2 = 0.680, R^2_{adj} = 0.678$$

#### In general:

 $y = a + b_1 \quad x_1 + b_2 \quad x_2 + \ldots + \varepsilon$ Estimation:  $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$ bodyfat = -59.3 + 0.484 abdomen + 36.46 waist/hip-ratio

## Statistical model

 $y_i = a + b_1 x_{1i} + b_2 x_{2i} + \ldots + b_k x_{ki} + \varepsilon_i$   $i = 1, \ldots, n$ 

 $a + b_1 x_1 + b_2 x_2 + \ldots + b_k x_k$  = regression function, response surface

- $\varepsilon_i$  = unobserved, random noise
  - independent

• 
$$\mathsf{E}(\varepsilon_i) = 0, \mathsf{Var}(\varepsilon_i) = \sigma^2 \leftarrow \mathsf{constant}$$

Procedure as in the case of the simple linear regression:

Least squares method:

Prediction: 
$$\hat{y}_i = \hat{a} + \hat{b}_1 x_{1i} + \ldots + \hat{b}_k x_{ki}$$

Choose estimation of the parameters, so that

$$S(\hat{a}, \hat{b}_1, \dots, \hat{b}_k) = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$
 is minimized!

Set partial derivatives equal to zero  $\rightarrow$  normal equations.

## Statistical model

For a clear illustration use a matrix formulation:

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \quad \mathbf{X} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1k} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n1} & \cdots & x_{nk} \end{pmatrix}$$
$$\boldsymbol{\varepsilon} = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} a \\ b_1 \\ \vdots \\ b_k \end{pmatrix}$$

 $\longrightarrow {\sf Statistical model:} \ {\bf y} = {\bf X} {\bf b} + {\boldsymbol \varepsilon}$ 

Normal equations (for  $a, b_1, \ldots, b_k$ ):

$$\mathbf{X}'\mathbf{X}\,\mathbf{b} = \mathbf{X}'\mathbf{y}$$

Remember: centered formulation for the simple linear regression:

$$\sum (x_i - \bar{x})^2 b = \sum (x_i - \bar{x})(y_i - \bar{y})$$

## Generalisation of the correlation

Instead of one correlation we get a correlation matrix.

|           | bodyfat | bmi   | waist_hip | abdomen | weight |
|-----------|---------|-------|-----------|---------|--------|
| bodyfat   | 1.000   | 0.000 | 0.000     | 0.000   | 0.000  |
| bmi       | 0.718   | 1.000 | 0.000     | 0.000   | 0.000  |
| waist_hip | 0.763   | 0.678 | 1.000     | 0.000   | 0.000  |
| abdomen   | 0.813   | 0.903 | 0.847     | 1.000   | 0.000  |
| weight    | 0.600   | 0.867 | 0.540     | 0.865   | 1.000  |

Here the pairwise correlations are shown below the diagonal and the p-values above.

## Generalisation of the correlation

How strong is the multiple linear relation?

Multiple coefficient of determination

$$R^{2} = \frac{s_{\text{reg}}^{2}}{s_{y}^{2}} = \frac{\text{explained variance}}{\text{variance of } y} = 1 - \frac{s_{\text{res}}^{2}}{s_{y}^{2}}$$

Comment:  $R^2 = (r_{y\hat{y}})^2$  $r_{y\hat{y}}$  is called multiple correlation coefficient = correlation between y and best linear combination of  $x_1, \ldots, x_k$ 

Remember:  $R^2$  is a measure for the goodness of a prediction:

- observations scatter around  $\bar{y}$  with SD =  $s_y$
- observations scatter around the prediction value  $\hat{y}$  with  $s_{\rm res}=\sqrt{1-R^2}\,s_y\leq s_y$

### Generalisation of the correlation

Example: 
$$s_{\text{bodyfat}} = 8.0$$
,  $R^2 = 0.68$   
 $\rightarrow s_{\text{res}} = \sqrt{1 - 0.68} \times 8.0 = 4.5$ 

**Warning:**  $R^2$  does not provide an unbiased estimation of the proportion of expected variance explained by regression (too optimistic).

Unbiased estimation of the residual variance:

$$\hat{\sigma}^2 = \frac{1}{n-k-1} \sum_{i=1}^n e_i^2 = \frac{n-1}{n-k-1} s_{\rm res}^2$$

Unbiased estimation of the proportion of explained variance.

$$R_{
m adj}^2 = 1 - rac{\hat{\sigma}^2}{s_y^2}$$



Correlation coefficient between two variables whereby the remaining variables are kept constant.

 $\longrightarrow$  Comparable statement as multiple regression coefficient



A is a "confounder" for the relation of B to C

### Partial correlation

Example: Relation of body fat proportion and weight for males. A = abdomen, B = body fat, C = weight:

$$r_{\rm AB} = 0.81,$$
  $r_{\rm AC} = 0.86,$   $r_{\rm BC} = 0.60$ 

Are body fat proportion and weight related?

$$r_{BC.A} = \frac{r_{BC} - r_{AB}r_{AC}}{\sqrt{(1 - r_{AB}^2)(1 - r_{AC}^2)}} = -0.35$$

 $\longrightarrow$  the sign of the correlation switches when the waist circumference is known.

## Examination of hypotheses

(Null) hypotheses:

- There is no relation at all between  $(x_1, \ldots, x_k)$  and y.
- A certain independent variable has no influence.
- A group of independent variables has no influence.
- The relation is linear and not quadratic.
- The influence of the independent variables is additive.

Condition:  $\varepsilon_i$  normally distributed

Linear hypotheses  $\longrightarrow$  F-tests

## Examination of hypotheses

#### Example:

Null hypothesis: true multiple correlation R = 0 (no relation at all).

#### Test quantity

$$T = \frac{R^2 (n - k - 1)}{1 - R^2} \sim F_{1, n - k - 1}$$

(Generalisation of the simple, linear case, since  $F_{1,m} = t_m^2$ )

## Variable selection

- Aspects:
  - simple model (without inessential variables)
  - include important variables
  - high prediction power
  - reproducibility of the results
- Procedure:
  - stepwise procedure
    - $\star$  forward
    - ★ backward
    - ⋆ stepwise
  - "best subset selection"
- Problem:
  - multi-collinearity  $\longrightarrow$  instability

## Variable selection

Stepwise procedures: stepwise, forward, backward

- Dependent variable: y = bodyfat
- Independent variables: x = age, weight, body height, 10 body circumference measures, waist-hip ratio.

forward (p = 0.05)

| step | included | $R^2$ | $R_{\rm adj}^2$ | variable | <i>p</i> –value |
|------|----------|-------|-----------------|----------|-----------------|
| 1.   | abdomen  | .661  | .659            | abdomen  | <.0001          |
| 2.   | weight   | .703  | .700            | abdomen  | <.0001          |
|      |          |       |                 | weight   | <.0001          |
| 3.   | wrist    | .714  | .711            | abdomen  | <.0001          |
|      |          |       |                 | weight   | .0004           |
|      |          |       |                 | wrist    | .002            |
| 4.   | biceps   | .718  | .713            | abdomen  | <.0001          |
|      |          |       |                 | weight   | <.0001          |
|      |          |       |                 | wrist    | .001            |
|      |          |       |                 | biceps   | .08             |

backward: same result

#### Common model:

 $bodyfat = constant + abdomen + weight + wrist + error \\ {\tt Master of Science in Medical Biology}$ 



#### Keep in mind:

- The model of the multiple linear regression should be assessed according to the meaning and significance of the prediction variables and according to the proportion of explained variance  $R_{adj}^2$ .
- Stepwise p-values  $\not\rightarrow$  significance
- If the forecast is important use AIC, GCV, BIC, ...

## Residual analysis

• Examination of the assumptions of the regression analysis:

- outliers, non-normal distribution
- influential observations, leverage points
- unequal variances
- non-linearity
- dependent observations
- graphical methods  $\longleftrightarrow$  tests

#### Keep in mind:

There is no universally valid procedure for the examination of the assumptions of the regression analysis!

## Residuals

#### Residual

observation - predicted value

#### Standardized residual

#### residual sample standard deviation of the residuals



# Residuals

Standardized residuals should be within -2 and 2. There should be no specific patterns.

Otherwise, check for

- outliers
- unequal variances
- non-normal distribution
- non-linearity
- important variable not included in the model

#### Remember:

"Pattern" should be interpretable in respect of contents and should be significant.

 $\longrightarrow \text{Non-parametric procedures}$ 

## Variance stability

Plot squared standardized residuals against predicted target quantity.



 $H_0$ : Spearman's rank correlation coefficient = 0  $\longrightarrow p = 0.19$ 

# Contraindications

- dependent measurements (e.g. for one person) Solution: Repeated-measures analysis
- variability dependent on measurement Solution:
  - 1 transformation
  - 2 weighted least-squares estimation
- skewed distribution Solution:



- 2 robust regression
- non-linear relation Solution:



- Itransformation
- 2 non-linear regression

## Non-linear and non-parametric regression

#### Non-linear regression:

Special case polynomial regression

= multiple linear regression independent variable  $(x - \bar{x}), (x - \bar{x})^2, \dots, (x - \bar{x})^k$ 

#### Non-parametric regression:

- smoothing splines
- Gasser-Müller kernel estimator
- local linear estimator (LOWESS, LOESS)

### Non-linear and non-parametric regression

Example: Growth data in form of increments



Polynomial 4. order:  $R_{adj}^2 = 0.76$ Polynomial 9. order:  $R_{adj}^2 = 0.93$ 

### Non-linear and non-parametric regression

• Preece-Baines Modell (1978): · · ·

$$f(x) = a - \frac{4(a - f(b))}{[\exp\{c(x - b)\} + \exp\{d(x - b)\}][1 + \exp\{e(x - b)\}]}$$

- for increments the derivative is required.
- Gasser-Müller kernel estimator: -



• Non-parametric regression reflects dynamics and is better than the non-linear and polynomial regression.