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Logistic regression

Great importance for medical research
So far: “ordinary” regression

@ explain an “outcome” variable y
through explanatory variables xi, ..., xx

@ quantitative outcome variable y (normally distributed)

@ relation usually assumed to be linear

New with logistic regression: outcome y is binary
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Examples

A. y = patients survive (y = 0) or die (y =1)
x1 = therapy (x; = A, B; nominal)
xp = age (in years; continuous)
X3, ... = laboratory parameters.

B. case—control-study (epidemiology)
y = case (y = 1) or control (y = 0)
x1 = exposed (x; = 1) or not (x; = 0)
X2, ...= confounder.

Statistical analysis

with one independent variable x also:
@ Mann-Whitney test (or unpaired t—test)

o Fisher's exact test (or y?-test)
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Stem cell-like cells have recently been identified in melanoma cell
lines, but their relevance for melanoma pathogenesis is controver-
sial. To characterize the stem cell signature of melanoma, expres-
sion of stem cell markers BMI-1 and nestin was studied in 64 cuta-
neous mel 165 mel. as well as 53 mela-
noma cell lines. Stem cell renewal factor BMI-1 is a
transcrlgtlonal repressor of the Inkda/Arf locus encoding pl(S“"""l
and p14™", Increased nuclear BMI-1 expression was detectable in
41 of 64 (64%) primary mel. 117 of 165 mel. metas-
tases (71%) and 15 of 53 (28%) melanoma cell lines. High nestin
expression was observed in 14 of 56 primary melanomas (25%),
84 of 165 melanoma metastases (50%) and 21 of 53 melanoma cell
lines (40%). There was a significant correlation between BMI-1
and nestin expression in cell lines (p = 0.001) and metastases (p =
0.02). These data indicate that cells in primary melanomas and
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their metastases may have stem cell propertlea Cell lines obtained
from showed a si higher BMI-1
expression compared to cell lines from primary melanoma p=
0.001). Further, primary lacking ly

at presentation (pN0 n = 40) was less frequentlv BMI 1 posmve
than mel. ing with lymphatic (pN1
24; 52% versus 83% p = 0.01). Therefore, BMI-1 expression
appears to induce a metastatic tendency. Because BMI-1 functions
asa lranscrlptlonal repressor of the Inkda/Arf locus, p16™** and
pl4?” expression was also analyzed. A high BMI-1/low plek
expression pattern was a significant predictor of metastasis by
means of logistic regression analysis (p = 0.005). This suggests
that BMI-1 mediated repression of p16™** may contribute to an
increased aggressive behavior of stem cell-like melanoma cells.




Statistics

BMI-1, p16™**, p14”™ and nestin expression in primary mela-
noma were compared between different patient groups using the
Mann-Whitney test. Correlations between BMI-1, p16‘“k4a, p14A”,
nestin and Breslow tumor thickness were analyzed using Spear-
man’s rank correlation. Differences in tumor-specific survival
between groups were calculated by log rank test. A logistic regres-
sion was performed to evaluate the predictive power of BMI-1 and
pl16™** expression in primary malignant melanoma for lymph
node metastasis. p-Values below 0.05 were considered as signifi-
cant. SPSS 12.0.1 for windows (SPSS) was used for statistical
analyses.

TABLE II - RELATIVE RISK OF LYMPH NODE METASTASIS ACCORDING TO BMI-1 AND P16™*** EXPRESSION LEVELS IN PRIMARY MELANOMA

n Univariate OR p-value Multivariate OR p-value

p16™4* low vs. high! 35/29 3.0 (1.0-8.6) 0.04 2.7 (0.89-8.1) 0.08
BMI-1 high vs. Low' 41/23 4.5 (1.3-15.6) 0.02 4.1 (1.2-14.6) 0.03
p16™** low/BMI-1 high vs. others' 22/42 3.2(1.4-7.3) 0.005
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Odds ratio (OR)

Example: ldentification of risk factors for lymph node metastases with
prostate cancer (Brown, 1980)

n = 52 patients
y = nodal metastases (0 = none, 1 = metastases)
X = age, phosphatase, X-ray result, tumor size, tumor grade.

The first two x—variables are continuous, the rest binary.

Contingency table for the relation between nodal metastases and
X-ray result

X-ray result
x=0 x=1
no nodal metastases (y = 0) 28 4 32
nodal metastases (y = 1) 9 11 20
37 15 52
sensitivity = 11/20 = 55% , specificity = 28/32 = 87%

x2—test p = 0.001
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Relative risk (RR) or odds ratio (OR)?

x=0 x=1
28 4 32
9 11 20
37 15 52

Il
- o

< <
I

“Risk” defined as
P(y = 1|x) = p(x),
— p(0) =9/37 =24%, p(1) = 11/15 = 73%

11 x 37
RR = p(1)/p(0) = = = 3.0

RR only valid for representative sample

From betting we know “odds”:

Ply=1x) _ _ p(x)
Py =0x)  1-p(x)
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Dear Mr. Goodman, CEO, the Members of the Board
wish you a speedy recovery by a vote of 11 to 8.

Master of Science in Medical Biology



Relative risk (RR) or odds ratio (OR)?

Im epidemiology the “odds ratio” is a measure for the relative risk:

x=0 x=1
28 4
9 “* 11

< <
I
= O

or_ PU=1x=1) / Ply=1jx=0)  28x11 _

TPy —1x=1/T-Ply=1x=0) _ 9x4 _°°
OR is also valid for case—control studies

For rare diseases, OR and RR are nearly equal:

~op(1) p(0) _ p(1)
Ok = 1—p(1>/1—p<0) ~ p00)
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Modelling by means of logistic regression

What is fundamental for a (simple) regression?
Model: yi=f(x,8)+¢e (i=1,...,n)

where: f = pre-specified function
e.g. linear f(x;, Bo, B1) = Bo + B Xi

regression function f(x, 3) = conditional expectation of y, given the
value x, i.e.

E(y [ x) = f(x, 5)

@ “outcome” binary event: “success’ (y = 1), “failure” (y =0)
@ probability for success p = P(y = 1)
e E(y)=0xP(y=0)+1xP(y=1)=p
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Why not use ordinary regression?

Example: y = presence of nodal metastases
x = phosphatase (logarithmised)

<
—

0.2

P(nodal metastases)
0.6

-0.2
I

T
0.3 0.4 0.6 08 1 1.5
phosphatase

regression = conditional mean of y given x — E(y | x).

Thus:  E(y [x)=P(y = 1] x) = p(x)

A probability is modelled — lies between 0 and 1.
— plausible to model p(x) as distribution function.
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P(nodal metastases)

g B T T T T T T
0.3 0.4 0.6 0.8 1 1.5
phosphatase
y=0 2 16 10 4 0
y=1| 0 4 8 6 2
OR 00 3.2 1.9 oo
o OR for [0.58-0.79] vs. [0.41-0.57] = $&X8 = 3.2

e OR for [0.80-1.09] vs. [0.41-0.57]

 16x6_ 16x8 _ 10x6 _ _
=74xd —10x4 X 4xg —32x19=6

@ OR for a change of more than one class: multiplicative
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Which distribution function to use?

@ Assumption: odds ratio for adjoining classes is constant (similar
to the assumption of a constant slope of the regression function
in linear regression)

As OR multiplicative, log(OR) must be linear.
— for log—odds (logits):

(log = natural logarithm = log,)
— p(x) is logistic distribution function

(x) = exp(fo + F1x)
PRI =1 + exp(Bo + H1x)
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& Linearity of the logit—transformation

Assumption:
OR for x = xp + ¢ vs x = xp is constant in xp = OR(c)

OR multiplicative — OR(c) = OR(1)¢
Is g(x)=log (1 f(;()x)> linear?

OR(c): true OR for “x =c¢" vs x =0

log (OR(c)) = g(c) — &(0)

logarithmise:
g(x) —g(0) = log(OR(1)) x
g(x) = g(0) + log(OR(1)) x
gx) = Bo + B x
with Bo = g(0)
and B1 = log(OR(1))
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Estimation and testing in logistic regression

A. How to estimate 3y, (317

B. How to test whether the influence of x on y is not by chance
("significant™)?

Scientific hypothesis Hy: (31 # 0

Example: phosphatase influences presence of nodal metastases

Null hypothesis Hy: 61 =0

Example: phosphatase has no influence
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Method: Maximum Likelihood Estimation

Attractive characteristics:
[. maximum likelihood estimates are optimal
(— optimal use of data).

[l. they are normally distributed with known
variance—covariance matrix.
(— precision known — statistical tests)

I1l. tests and confidence intervals are optimal
(“likelihood ratio tests”)
But:
@ iterative procedure, i.e. solution not always correct

@ p-values only valid for large n (“asymptotically”)
(analogous to x°—test)
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What is maximum likelihood principle? (informal)

@ Probability for event y; = 1 known (Bernoulli), depending on
unknown model parameters g, 51 (“likelihood—function™)

@ Inserting data in model for p(x) yields likelihood function
(= function of parameters 3y, [(1):

oy exp(Bo + Bixi)
Pl = 1ha) = 1+ exp(Bo + B1xi)

@ Determine ﬁo, Bl by maximising the likelihood, i.e. probabilities
to observe these data (x;, y;) get maximal.

o Computing: iteratively solve a system of non—linear equations for
ﬁOa Bl

@ variance—covariance matrix for By, #1 as a byproduct.

= Leads to confidence intervals and tests
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Example: prostate cancer

Estimate Std. Error zvalue Pr(>|z|)

(Intercept) 0.9919 0.6033 1.64  0.1001
log,(phosph) 2.4198 0.8778 2.76 0.0058

95% confidence interval for exp((1):

exp(Estimate) Lower Upper
log,(phosph) 11.24 201 62.83

Hosmer and Lemeshow test (goodness of fit):
X% = 7.245, df =8, p—value= 0.510
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Wald test

Test for a single predictor

Wald test statistic

A

_ B
SE(51)

p—value: use of approximate normal distribution of ﬂAl

and standard error.

Example: Nodal metastases vs. phosphatase

Estimate  Std. Error z value Pr(>|z|)
(Intercept) 0.9919 0.6033 1.64 0.1001
log,(phosph)  2.4108 0.8778 276  0.0058

— Aﬁ{ _ 242 28
SE(f;) 09

@ Two-sided approximate p—value: P(|z| > 2.8) = 0.006
e Statistically significant, clinically negative influence of an

increased phosphatase
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Interpretation of coefficients

Linear regression: If x changes by one unit, the mean of y changes by
(1 units.

Relation between p(x) = P(y = 1| x) and x is linear in logits:

P(x)

g(x) = log <1—p(x)

>=ﬂo+ﬂ1x

Thus: change in x by one unit

— change in logit of p(x) by /31 units
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Interpretation: binary x variable

@ “odds ratio” OR: ratio of odds for x =1 (pos X-ray)
to odds for x = 0 (neg X-ray)

_p(1) p(0)
OR = 1—p(1)/1—p(0)

—  log(OR) = g(1) — g(0)
= (Bo+B1x1)—(Bo+ 1 x0)
= b6

ie. OR = exp(f1)

@ OR for neg vs. pos X-ray = exp(—f31) = 1/ exp(1)
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Interpretation: continuous x variable

If x changes by one unit, the logit changes by log(OR) = /31 units.

Thus: odds ratio = exp([31) is a measure for an increase in risk (in
odds) when x changes by one unit.

logit-increase when x changes by k units:
log(OR) = (Bo + 81 x (x + k)) — (Bo + B1 X x) = k x f31

OR for change of x by k units:

exp(k B1) = (exp(B1))* = ORX
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Interpretation of coefficients

Example: OR when phosphatase changes by a factor of 2:

OR =exp(f1) = 11.2
OR for a change by a factor of 1.5:

1.5 =2098 __ , OR =11.20585 — 41

Interpretation: categorical or ordinal x variable

One has to introduce binary “design variables”,
then interpretation as for binary variables.
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Computation of individual risk
Representative sample — p(x) and RR appropriate
Example: y = nodal metastases, x = log,(phosphatase)

exp(fo + 1x)
1+ exp(Bo + F1x)

RR for patients with one unit increase of log,(phosphatase) compared
to mean X (i.e. doubling of phosphatase):

absolute individual risk: p(x) =

x = —0.63 (corresponds to phosphatase of 27903 = 0.64)
1. 2.42 —0.
p(%) = exp(1.0 + x(=063)) _ 4o
1+ exp(1.0 4 2.42 x (—0.63))

exp(1.0 4+ 2.42 x 0.37)

%+ 1) = —0.87
P+ ) = T oot 242x037) ~ 08
p(x +1) 087
. RR= — %0 _ 53
p(x) 0.37

individual risk with doubled phosphatase is increased by a factor of
2.3. The OR, however, is OR = 11.2!
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Multiple logistic regression

k > 1 variables xi,...,x, — multiple logistic regression

Reasons as for multiple linear regression:

@ Eliminate potential effects of “confounding” variables in a study
with one explanatory variable.

@ Investigate potential prognostic factors of which we are not sure
whether they are important or redundant.

© Develop formulas for a better prediction of individual risk based
on explanatory variables

@ Problem solved with maximum likelihood principle

@ Rule of thumb: at least 20 events and 20 non-events per
explanatory variable
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Univariate analysis for prostate cancer example

Estimate Std. Error zvalue Pr(>|z]) OR

log,(phosph) 2.4198 0.8778 276 0.0058 11.2
Age  -0.0448 0.0468 -0.96 0.3379 1.0

X-ray 2.1466 0.6984 3.07 0.0021 8.6

Size 1.6094 0.6325 2.54 0.0109 5.0

Grade 1.1389 0.5972 1.91 0.0565 3.1
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Multiple logistic regresstion: prostate cancer example

Estimate Std. Error zvalue Pr(>|z]) OR

(Intercept)  -0.5418 0.8298  -0.65  0.5138
log,(phosph) 2.3645 1.0267 2.30 0.0213 10.6
X-ray 1.9704 0.8207 2.40 0.0163 7.2
Size 1.6175 0.7534 2.15 0.0318 5.0

Interpretation:
(i Influence of x; when remaining variables are fixed

p—values Does x;, given the fixed remaining variables, yield
additional information about P(y = 1)? Significant
variables are called “independent risk factors”.

exp(f3;) OR with fixed remaining variables, i.e. OR of a patient
with X-ray = 1, Size = 1, by a factor of 2 decreased

phosphatase against a patient with X-ray = 0, Size = 0:

OR =5.0 x 7.2/10.6 = 3.4
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Multiple logistic regression

How to combine the information of several significant explanatory
variables?

Pl = B1x1 + faxa + ... + Prx

is a prognostic index (score).

If PI large ( > cut-point), we predict “y = 1".
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Model choice and model tests

o difficult topic — expert

@ similar to linear regression

By means of
e statistical tests (comparison of models)
e R? often provided, but use is controversial

@ judge quality of a model by means of sensitivity and specificity
— "ROC analysis”
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Goodness of prediction
Example: Nodal metastases with prostate cancer

@ ROC (receiver operating characteristic) curve:

1.0
0.8
> 067
z
@
2
@
? 04+
02 — PI/AUC=0.87
- /. —— Age/AUC=0.57
1/, —— X-ray/AUC=0.71
[ — Size / AUC = 0.69
0.0 o Phosphatase / AUC = 0.75
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

1 - specificity
Pl = 2.4 x log, (phosphatase) 4+ 2 x X-ray + 1.6 x Size

@ area of 0.5 corresponds to complete ignorance.
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Choice of variables

Too many: varying parameter, large SEs
Too few: outcome not well explained, bias

— include all variables that are, a priori, of medical interest
— "“principle of parsimony”
— if: clear idea — comparative testing of models

If unclear and many predictors:

(i) Compute univariate model for each x variable, eliminate e. g.
those with p > 0.2

(i) Build a multiple model with the remaining variables; eliminate
clearly non—significant variables

Alternative: stepwise selection
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Model building

Linearity of logits in x

@ test against nonlinear alternatives (quadratic, Box—Tidwell-test:

interaction x * log(x))
@ transformation of x to linear relation

Interactions

Example: y = occurrence of a coronary heart disease
X1 = age, xo = gender

Model without interaction (“additive”):

g(x) = Bo + fix1 + Paxo

Meaning: gender related differences are not depending on age.
If gender related differences increase or decrease with age ( “specific
effect”) — modelling including interaction.

g(x1,x2,x3) = Bo + Bix1 + Baxz + Braxixe
OR for gender is then depending on age.
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