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Probability theory

draw conclusion for|
population mean

sample:

Link between sample and population:

mean X

@ generalise results from sample to
the population

\y

@ the population is a theoretical
- usually infinite - quantity

@ imagine one could observe the whole population (e.g. all human
beings in the past, present and future) and handle it like a sample

@ postulate that we would get “true” (population-)
characteristics:
probability (= relative frequency; %): P
expectation (~ mean X): i
standard deviation (~ s): o
percentiles

@ needed for statistical tests and confidence intervals
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Probability theory

Intuitive:

Probability = relative frequency in the population

Formal:

Random experiment

!

Events

!

Probabilities
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Random experiment

An experiment or observation that can be repeated numerous times
under the same condition.

Examples:

@ roll a dice

o flip a coin

@ diagnose H; Ny in a person

@ measure the body height of a student
@ roll a dice twice

°

measure the body height of 245 students
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Events

Sample space ) = set of all possible results of a random experiment
Examples:

Diagnosis — Q = { “sick”, “healthy” }
Roll the dice — Q = {1,2,3,4,5,6}
Body height — Q = {x|x > 0}

Event A = subset of 2

Examples:
A ={2,4,6} even number on the dice
A= {1}

A = {Body height > 180 cm}

A = {170 cm < Body height < 180 cm}
A = Q = sure event

A = () = impossible event
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Events

Elementary event w = element of 2

Set-theoretic operations:

ANB intersection  (“and")
AUB union (“or")

A A —~A complement (“not A")
Relation:

BCA (“included")
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Probability
@ P(A) = relative frequency of a measurable event A in Q

@ Probability can be defined formally based on:

Probability axioms
I. The probability of an event is a non-negative real number:

0 < P(A) forall AC Q

Il. Unit measure: the probability that some elementary event in the
entire sample space will occur is 1: P(Q2) =1

I1l. Additivity: Any countable sequence of pairwise disjoint events
A1, A, ... (i.e. AiNAj=10 foralli# j) satisfies:

P(ALUAU---) =Y P(A).

Consequence: P(A) <1 forallAcQ
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Probability

Bonferroni inequality

P(ALUAU--UA,) <> P(A)

Since:

P(A1 U A2) = P(A1) + P(A2) — P(A1 N Ap)
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Conditional probability

P(A1|A2) = Probability of some event Ay, given the occurrence of
some other event As:

P(A1]A2) = % @

— P(A1 N A2) = P(A2) P(A1|A2)
= P(A1) P(A2|A1)

Bayes' theorem
P(B|A) P(A)

P(AIB) = ~ 5y
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Conditional probability

Law of total probability
Let {B;:i=1,2,3,...} be a partition of Q
(ie. BiNBj=0 foralli,jand ByUB,U---UB,=1Q), then:
Bi| Bx| Bs| By
P(A) =) _P(ANB;) A

or, alternatively,

P(A) = Z_ P(A|B;) P(B;)
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Conditional probability

Definition: Independence
Two events A and B are (statistically) independent if and only if

P(ANB) =P(A)P(B) or P(B|A)=P(B)

Independence:
@ formal simplification
@ application of many mathematical laws
Examples:
@ If a dice is rolled three times, the events of getting each time a 6
are independent:
1 1 1

1
P(three times 6) = 6 X6%5= 516~ = 0.0046

o If a dice is rolled three times getting at least once a 6:

P(at least one 6) =1 —P(no 6) =1 — > P —0.42
a - 6) 216
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Random variable X

Function that maps an elementary event in the sample space to a real
number (Result of a random experiment).

Examples:

© Roll the dice: Every elementary event is mapped to one of the
numbers 1, 2, 3, 4, 5, 6.
(“discrete random variable™)

@ Body height: The result is a real number.
(“continuous random variable")

The observed value (X = x) is called realisation.
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Random variable X

Definition: Sample
n realisations of a random variable X of interest: xi,...,X,.

Events of interest and their probabilities:
PGB<X<6), P(X<c), Pl@ag<X<b),
P(X = x;), if X discrete
Example: Flip a coin
@ possible realizations X = 0 (heads), X =1 (tails)
@ sample n =2
@ distribution of number of “tails”
@ possible samples x3, xp: 00 01 10 11
P(X1+Xa =1) =P(Xy + X2 = 1|X; = 0) P(X; = 0)
+P(Xi+ X2 = 1|Xy = 1)P(X1 = 1)
=P(X2 =1)P(Xy =0) + P(Xo = 0)P(X; = 1)
1 1

N 1
4 4 2
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Binomial distribution

@ sequence of n independent yes/no (1/0) experiments
P(X,‘ = 1) =p
K=> X
i=1

@ all permutations of xi,...,x, with K = k have the same
probability

pr(1—p)*

@ number of possible permutations with exactly k successes
out of n known from combinatorics:
binomial coefficient “n choose k"

(2) = 7omn
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Binomial distribution

@ probability mass function

° n=20
mﬂﬂ HH!—!

0.00
L

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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Example: mean number of recovered patients p = -

k

A total of n = 20 patients are examined to test whether or not a new
drug yields a probability of recovery higher than p = 0.4 (i.e. 40%).

The number k of recovered patients (k = 0 to 20 is possible) follows
a binomial distribution. If one assumes a probability of p = 0.4, the
following probability mass distribution for the number of recoveries

arises:

0.15
|

0.10
I

0.05
I

sl

H P(k>13)=0.021

0.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

This means that 13 or more recoveries are expected with a probability

of only 2.1%.
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Cumulative distribution function

Events of the form X < x are important as everything can be
composed of them with elementary operations

Definition: Cumulative distribution function F
of a random variable X

F(x) =P(X < x)

1.0

0.8

0.6

F(x)
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X

see also: empirical (cumulative) distribution function, for data
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Cumulative distribution function

Properties of F:
Q F(—) =0, F(+o0) =1
@ F monotone increasing
Q P(a< X <b)=F(b)— F(a)

Percentiles of distributions are important for statistical tests.
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Cumulative distribution function

Continuous random variable (x7): F continuous

1.0
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F(x)
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Definition: Probability density f

a) discrete variable: f(x;) = P(X = x;)

000 005 010 015 020 0.25

L.

0 8 9 10

b) continuous variable: f(x) = F'(x)

)

Analogy: histogram
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Probability density

PropertieS'
0

) >
Q / f(t)dt =1

© P(a < X < b) = F(b) — F(a) = /b F(t)dt
Q f(t)dt =P(t < X < t+ At) )

(stochastic) independence of X and Y
= fxy(x,y) = fx(x) fr ()
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(Population-) Characteristics of a cumulative distribution
function F or random variable X, respectively

expectation w=E[X]= /_Z xf (x)dx
variance o2 =E [(x - E[X])ﬂ - /_ (= p)RF(x)dx

standard deviation o = \/E [(X - E[X])ﬂ
alpha-percentile x, F(x,) = «
If discrete: [ — sums

H = ZXI = XI

sample characteristics = statistical estimates for population
characteristics
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Properties

© Additivity of expectation:

E[X + Y] = E[X] + E[Y]

© Non-additivity of variance:

Var(X + Y) = Var(X) + Var(Y) +2Cov(X, Y)

If X,Y are uncorrelated (i.e. p = 0) — variance is additive

O X, Y independent — X,

Y uncorrelated

“«—" not true (but valid for normal distributions)

Q Var(c X) = c? Var(X)

Important consequence of (2) and (4):

D ST independent, identically distributed random variables,

variance o2. Then:

i)

O'Y:%

Master of Science in Medical Biology
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Z L Var(Xi) = %

i=1

“Square Root of n Law"

23 /48



Important Distributions: Normal distribution N (i, 02)

If # =0, 0® = 1: Standard normal distribution

Fx) = —mexp (—(X_“)z)

Ly

uJ40 ‘ u—‘20 ‘ ﬁ ‘ p+‘20 ‘ p+‘40 HJ4U ‘ p—‘20 ‘ ﬁ ‘ u+‘20 ‘ u+‘40
X X
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Normal distribution N (1, o2)

Properties:

Central Limit Theorem — omnipresent
symmetric

simple parameters p, o2

“light tails”

e © © ¢ ¢

assumption for many statistical methods
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y>—distribution

Z1,...,Z, independent N(0,1)

14
2 = Z Z?  x’—distributed with v degrees of freedom
i=1

<
o
™ 2
o | X2
< o
g o 2
X4
= 2
e 10
o |
© T T T T T
0 5 10 15 20

Master of Science in Medical Biology 26 / 48



y>—distribution

Properties:

p=v, o°=2v
v = 2: exponential distribution
physics: modelling energy or the like

statistics: important distribution for tests
(contingency tables, goodness—offit)

model for the variance of normally distributed data
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Poisson—distribution (discrete)

k
P(X =k) = %e_)‘ J

0.00 0.05 0.10 0.15 0.20 0.25

| =
0 1 2 3 4 5 6 7 8 9 10
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Poisson—distribution

Properties:

o u=2X\ o’>=)

@ modelling of rare events (radioactive decay, crime rate)

Number of crimes full moon days | new moon days
per day Obs Exp | Obs Exp
0 40 452 | 114 112.8
1 64 63.1 56 56.4
2 56 443 11 14.1
3 19 20.7 4 2.4
4 1 7.1 1 0.3
5 2 2.0 0 0.0
6 0 0.5 0 0.0
7 0 0.1 0 0.0
8 0 0.0 0 0.0
9 1 0.0 0 0.0
Total number of days | 183 183.0 | 186 186.0
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Binomial—distribution

n

P(X=k) = (,

)P —p)"* 0<k<n J

o u=np, o*=np(l—p)

0.00 0.05 0.10 0.15 0.20 0.25
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Law of Large Numbers (n — o0)

(Always: independent random variables)

@ Law of large numbers (LLN)
X —u in “probability”

Master of Science in Medical Biology 31 /48



Central limit theorem

o Central limit theorem (CLT)

X _
—_M — N(0,1) ‘“in distribution”

© 7 X‘ p=0.3

s n=20

S i 012345671829 11 13 15 17 19
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Central limit theorem

o Central limit theorem (CLT)

X _
—_M — N(0,1) ‘“in distribution”

- p=0.3

| dan n =100

0.00 0.02 0.04 0.06 0.08 0.10

10 13 16 19 22 25 28 31 34 37 40 43 46 49
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Central limit theorem

o Central limit theorem (CLT)

X —
ZoE, N(0,1) “in distribution”
ox

200 216 232 248 264 280 296 312 328 344 360 376 392
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Estimation procedures

@ Sample characteristics such as e.g. the mean are random,

they vary.
AN ° 8 %
“ g 8 9]
: .
o] [e] -
T o g
= < € ©
T4 8 2 g
e ()
N
I
T T \
1 2 3
Trial

An estimator is a sample characteristic (statistic) which aims at
approximating a population characteristic (parameter).
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Estimation procedures
Studies cost money, time; data are often not available at will

@ aim is a statistically efficient use of data

@ use of “good” estimators for quantities of interest

Let A be an estimator for a parameter 6, based on a sample xy, ..

Minimal requirement: Validity of LLN and CLT:

@ —0 forn— ooin probability
“ consistent”

o 0 for large n approximately normally distributed
Usually fulfilled!

Quantitatively: error (# — ) should be small!

Master of Science in Medical Biology
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Criterion 1: Unbiasedness of 6

E[é—e}:o or E[é]:@

i.e. on average you are right

If not: E [HA — 9] = bias of 0

Examples:
@ n machines that can independently fail
@ failure statistic, per day: X; = 0, no failure
X; =1, failure

1
Estimator p for failure probability p: p =x = — ZX,-
n

E[ﬁ]:E[ ZX

:% E[Xi]=p

Thus: no bias
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Criterion 1: Unbiasedness of 6

@ With two machines: probability that both fail:

naive: p? = x?,
but:
E[x?] = Var(x) + (E[x])?
1
= Var(X1) + (E[X1])?
1—
n
Bias = M # 0 for finite n
n

Master of Science in Medical Biology
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Criterion 2: Minimum Variance Estimation

Create an unbiased estimator @ such that

Var(f) = minimal J

Unbiased estimators with minimal variance are good. |
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Accuracy of the mean

n independent observations with variance o2

2
s Var(x) = =
n

Standard error of the mean

0% = SEM = SE(X) =

Sle
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Accuracy of fractions p

Example:

n = 80 individuals surveyed about asthma
k = 7 thereof are asthmatics

k
p=— =0.088 estimated prevalence
n

How accurate is p determined? Binomial distribution!

p(L—p)

2 A
~ = V =
o} = Var(p) = 2=

)
n
In the example with p = 0.088: sp = 0.032

If p=0.5: s, = 0.056

_>5ﬁ:

This means, middle frequencies are more dispersed than extreme ones.
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Accuracy of estimators

Variation of an estimator = standard error SE

@ can be obtained from computer printouts

@ conveys an impression about the accuracy of the statistic
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Maximum likelihood estimation

Unbiased estimators with minimal variance do not always exist.

General alternative:

Maximum likelihood estimation

@ general, successful estimation principle
@ algorithmic procedures exist
@ theory thereto is complex

@ assumption of a distribution model f(x, 6)
for data is necessary to estimate parameter 6
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Maximum likelihood estimation: ldea

Given data xi, ..., x, (independent)

Probability to observe x; = f(x1,6)

000

Probability to observe xi, ..., X:
product, since random variables x; are independent

L(0) = f(x1,0) x F(x2,0) x -+ x (%, 0)

L(#) is called likelihood function, 6 is the argument,
X; are given data

© For which value 6 is the agreement with the data xi, ..., x,
maximal?

© Determine 6 such that L(#) is maximal
(“maximum likelihood estimator” for )

© Mathematically often easier to maximise log L(6).
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ML estimation: Example

Flip a coin 10 times, observe “heads” as result 4 times.
How large is the probability to throw “heads” ?

Heuristically: probability p = 0.4
Probability distribution for 4 times “heads” is according to binomial
distribution proportional to

L(p) = p*(1 - p)°
Maximisation:
L'(p) = 4p*(1 — p)° — 6p*(1 — p)° =0
— 4(1—p)=6p
— maximum likelihood estimator: py; = 0.4

Thus?

In this example plausible.
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ML estimation: Example

Sample xq, ..., X, originating from normal distribution N'(11, o?)

Maximum likelihood estimators for p, o ?

L(p,0°) = < ! >nexp (—T;é(X;—MV)

2mo

1
log L(p,0%) = —nlogv27r—glogaz—FZ(x,-—u)z

Olog L 1
o ;Z(x,-—u):O

A~

1
— bmL = X=;§ Xi
i=1

as known and to be expected.

Master of Science in Medical Biology 44 / 48



ML estimation: Example

Maximum likelihood estimators for o2 :

n

Olog L n 1 5
Oo? 202 + 204 ;(X' ")
1 n
— 6‘ML = ; Z(Xi _ )—<)2
i=1
Attention: 6%/,L =10 m 152 !

s2 is unbiased, but ﬁﬂ is not.
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Properties of ML estimators

Good properties:
© ML method is never worse than any other method (for n — o).
© ML method is applicable for most (even complex) problems.
© ML estimators are consistent.
© If 0 is a ML estimator for 0, then h(f) is a ML estimator for h(0).

© ML estimators are approximately normally distributed.

And the bad news?
© Many properties only asymptotically valid (n — o0)

© One needs a parametric probability model for data,
e.g. normal distribution
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Where does chance come from?

@ Random sample: “Drawing” of individuals from the population

- chance is not a measurement error but inter-individual variation

@ Representativeness (generalisability)
- volunteers are not representative for the population of all patients

- patients from university hospitals are not representative

@ Randomisation: random splitting in two or more groups

- chance arises from the computer (pseudo random) or physical
random process
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Where does chance come from?

@ Independence
- succession of patients in the hospital is random
- violated with patients from a single family,

- or, when doctors have an effect on the result (cluster)

@ With repeated measurements for the same patient (pre-post
comparisons, several locations, e.g. arteries or longitudinal
studies) the patient is the observational unit and not the single
measurement.
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