Biostatistics Probability theory

Burkhardt Seifert & Alois Tschopp

Biostatistics Unit University of Zurich

Probability theory

Link between sample and population:

- generalise results from sample to the population
- the population is a theoretical
 - usually infinite quantity

population mean µ

- imagine one could observe the whole population (e.g. all human beings in the past, present and future) and handle it like a sample
- postulate that we would get "true" (population-) characteristics:

probability (\approx relative frequency; %): P expectation (\approx mean \bar{x}): μ standard deviation (\approx s): σ percentiles

• needed for statistical tests and confidence intervals

Probability theory

Intuitive:

Probability = relative frequency in the population

Formal:

Random experiment \downarrow Events \downarrow Probabilities

Random experiment

An experiment or observation that can be repeated numerous times under the same condition.

Examples:

- roll a dice
- flip a coin
- diagnose H_1N_1 in a person
- measure the body height of a student
- roll a dice twice
- measure the body height of 245 students

Events

Sample space Ω = set of all possible results of a random experiment Examples:

$$\begin{array}{l} \text{Diagnosis} \longrightarrow \Omega = \{ \text{ "sick", "healthy"} \} \\ \text{Roll the dice} \longrightarrow \Omega = \{1, 2, 3, 4, 5, 6\} \\ \text{Body height} \longrightarrow \Omega = \{x | x > 0\} \end{array}$$

Event A = subset of Ω

Examples:

$$\begin{array}{l} \mathcal{A} = \{2,4,6\} \text{ even number on the dice} \\ \mathcal{A} = \{1\} \\ \mathcal{A} = \{\text{Body height} > 180 \text{ cm}\} \\ \mathcal{A} = \{170 \text{ cm} \leq \text{Body height} \leq 180 \text{ cm}\} \\ \mathcal{A} = \Omega = \text{sure event} \\ \mathcal{A} = \emptyset = \text{ impossible event} \end{array}$$

Events

Elementary event ω = element of Ω

Set-theoretic operations:

 $\begin{array}{lll} A \cap B & \text{intersection} & (\text{``and''}) \\ A \cup B & \text{union} & (\text{``or''}) \\ A^c, \overline{A}, \neg A & \text{complement} & (\text{``not} A'') \\ \end{array}$ Relation:

 $B \subset A$ ("included")

Probability

- P(A) = relative frequency of a measurable event A in Ω
- Probability can be defined formally based on:

Probability axioms

I. The probability of an event is a non-negative real number:

 $0 \leq \mathsf{P}(A)$ for all $A \subseteq \Omega$

- II. Unit measure: the probability that some elementary event in the entire sample space will occur is 1: $P(\Omega) = 1$
- III. Additivity: Any countable sequence of pairwise disjoint events A_1, A_2, \ldots (i.e. $A_i \cap A_j = \emptyset$ for all $i \neq j$) satisfies:

$$\mathsf{P}(A_1\cup A_2\cup\cdots)=\sum_i\mathsf{P}(A_i).$$

Consequence: $P(A) \leq 1$ for all $A \in \Omega$

Probability

Bonferroni inequality

$$\mathsf{P}(A_1 \cup A_2 \cup \cdots \cup A_n) \leq \sum_{i=1}^n \mathsf{P}(A_i)$$

Since:

Conditional probability

 $P(A_1|A_2) = Probability$ of some event A_1 , given the occurrence of some other event A_2 :

$$P(A_1|A_2) = \frac{P(A_1 \cap A_2)}{P(A_2)}$$

$$\rightarrow P(A_1 \cap A_2) = P(A_2)P(A_1|A_2)$$

$$= P(A_1)P(A_2|A_1)$$

$$A_1 \quad (A_1 \cap A_2) \quad A_2$$

Bayes' theorem $P(A|B) = \frac{P(B|A) P(A)}{P(B)}$

Conditional probability

Conditional probability

Definition: Independence

Two events A and B are (statistically) independent if and only if

 $P(A \cap B) = P(A)P(B)$ or P(B|A) = P(B)

Independence:

- formal simplification
- application of many mathematical laws

Examples:

• If a dice is rolled three times, the events of getting each time a 6 are independent:

P(three times 6) =
$$\frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} = \frac{1}{216} = 0.0046$$

• If a dice is rolled three times getting at least once a 6:

P(at least one 6) = 1 - P(no 6) = 1 -
$$\left(\frac{5}{6}\right)^3 = \frac{91}{216} = 0.42$$

Random variable X

Function that maps an elementary event in the sample space to a real number (Result of a random experiment).

Examples:

Roll the dice: Every elementary event is mapped to one of the numbers 1, 2, 3, 4, 5, 6.
 ("discrete random variable")

 Body height: The result is a real number. ("continuous random variable")

The observed value (X = x) is called **realisation**.

Random variable X

Definition: Sample

n realisations of a random variable X of interest: x_1, \ldots, x_n .

Events of interest and their probabilities:

$$\mathsf{P}(5 < X < 6), \quad \mathsf{P}(X \le c), \quad \mathsf{P}(a \le X \le b),$$

 $\mathsf{P}(X = x_i), \quad \text{if } X \text{ discrete}$

Example: Flip a coin

- possible realizations X = 0 (heads), X = 1 (tails)
- sample n = 2

• distribution of number of "tails"

• possible samples *x*₁, *x*₂: 00 01 10 11

$$P(X_1 + X_2 = 1) = P(X_1 + X_2 = 1 | X_1 = 0) P(X_1 = 0) + P(X_1 + X_2 = 1 | X_1 = 1) P(X_1 = 1) = P(X_2 = 1) P(X_1 = 0) + P(X_2 = 0) P(X_1 = 1) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

Master of Science in Medical Biology

Binomial distribution

• sequence of *n* independent yes/no (1/0) experiments

$$P(X_i = 1) = p$$
$$K = \sum_{i=1}^n X_i$$

• all permutations of x_1, \ldots, x_n with K = k have the same probability

$$p^k(1-p)^{n-k}$$

 number of possible permutations with exactly k successes out of n known from combinatorics:

binomial coefficient "*n* choose *k*"

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Binomial distribution

• probability mass function

$$\mathsf{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k} \quad 0 \le k \le n$$

Example: mean number of recovered patients $\hat{p} = \frac{k}{n}$

A total of n = 20 patients are examined to test whether or not a new drug yields a probability of recovery higher than p = 0.4 (i.e. 40%).

The number k of recovered patients (k = 0 to 20 is possible) follows a binomial distribution. If one assumes a probability of p = 0.4, the following probability mass distribution for the number of recoveries arises:

This means that 13 or more recoveries are expected with a probability of only 2.1%.

Master of Science in Medical Biology

Cumulative distribution function

Events of the form $X \le x$ are important as everything can be composed of them with elementary operations

Definition: **Cumulative distribution function** *F* of a random variable *X*

$$F(x) = P(X \le x)$$

see also: empirical (cumulative) distribution function, for data

Master of Science in Medical Biology

Cumulative distribution function

Properties of *F*:

- $F(-\infty) = 0, \quad F(+\infty) = 1$
- P monotone increasing

•
$$P(a < X \le b) = F(b) - F(a)$$

Percentiles of distributions are important for statistical tests.

Cumulative distribution function

Continuous random variable (χ^2_4): F continuous

Definition: Probability density f

a) discrete variable: $f(x_i) = P(X = x_i)$

b) continuous variable: f(x) = F'(x)

Analogy: histogram

Master of Science in Medical Biology

Probability density

Properties:

•
$$f(x) \ge 0$$

• $\int_{-\infty}^{\infty} f(t)dt = 1$
• $P(a < X \le b) = F(b) - F(a) = \int_{a}^{b} f(t)dt$
• $f(t)dt \approx P(t < X \le t + \Delta t)$

(stochastic) **independence** of X and Y $\iff f_{XY}(x, y) = f_X(x) f_Y(y)$

(Population-) **Characteristics** of a cumulative distribution function *F* or random variable *X*, respectively

 $\mu = \mathsf{E}[X] = \int_{-\infty}^{\infty} x f(x) dx$ expectation $\sigma^{2} = \mathsf{E}\left[\left(X - \mathsf{E}[X]\right)^{2}\right] = \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx$ variance standard deviation $\sigma = \sqrt{E\left[(X - E[X])^2\right]}$ alpha-percentile \mathbf{x}_{α} $F(\mathbf{x}_{\alpha}) = \alpha$ If discrete: $\int \longrightarrow$ sums $\mu = \sum_{i=1}^{n} x_i \mathsf{P}(X = x_i)$

sample characteristics = statistical estimates for population characteristics

Properties

Additivity of expectation:

$$\mathsf{E}[X+Y] = \mathsf{E}[X] + \mathsf{E}[Y]$$

Non-additivity of variance:

$$Var(X + Y) = Var(X) + Var(Y) + 2 \operatorname{Cov}(X, Y)$$

If X, Y are uncorrelated (i.e. $\rho = 0$) \longrightarrow variance is additive

Important consequence of (2) and (4):

 X_1, \ldots, X_n independent, identically distributed random variables, variance σ^2 . Then:

$$\operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)=\sum_{i=1}^{n}\frac{1}{n^{2}}\operatorname{Var}(X_{i})=\frac{\sigma^{2}}{n}$$

 $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$ "Square Root of *n* Law"

Master of Science in Medical Biology

Important Distributions: Normal distribution $\mathcal{N}(\mu, \sigma^2)$ If $\mu = 0, \sigma^2 = 1$: Standard normal distribution

$$f(x) = rac{1}{\sqrt{2\pi\sigma}} \exp\left(-rac{(x-\mu)^2}{2\sigma^2}
ight)$$

Normal distribution $\mathcal{N}(\mu, \sigma^2)$

Properties:

- $\bullet\,$ Central Limit Theorem \longrightarrow omnipresent
- symmetric
- simple parameters $\mu,~\sigma^2$
- "light tails"
- assumption for many statistical methods

χ^2 –distribution

 Z_1, \ldots, Z_{ν} independent $\mathcal{N}(0, 1)$

х

χ^2 -distribution

Properties:

•
$$\mu = \nu$$
, $\sigma^2 = 2\nu$

- $\nu = 2$: exponential distribution
- physics: modelling energy or the like
- statistics: important distribution for tests (contingency tables, goodness-of-fit)
- model for the variance of normally distributed data

Poisson-distribution (discrete)

Poisson-distribution

Properties:

•
$$\mu = \lambda$$
, $\sigma^2 = \lambda$

• modelling of rare events (radioactive decay, crime rate)

Number of crimes	full moon days		new moon days	
per day	Obs	Exp	Obs	Exp
0	40	45.2	114	112.8
1	64	63.1	56	56.4
2	56	44.3	11	14.1
3	19	20.7	4	2.4
4	1	7.1	1	0.3
5	2	2.0	0	0.0
6	0	0.5	0	0.0
7	0	0.1	0	0.0
8	0	0.0	0	0.0
9	1	0.0	0	0.0
Total number of days	183	183.0	186	186.0

Binomial-distribution

Law of Large Numbers $(n \longrightarrow \infty)$

(Always: independent random variables)

• Law of large numbers (LLN)
$$\bar{X} \longrightarrow \mu$$
 in "probability"

Central limit theorem

• Central limit theorem (CLT)

Central limit theorem

• Central limit theorem (CLT)

Central limit theorem

• Central limit theorem (CLT)

Estimation procedures

• Sample characteristics such as e.g. the mean are random, they vary.

Trial

An estimator is a sample characteristic (statistic) which aims at approximating a population characteristic (parameter).

Estimation procedures

Studies cost money, time; data are often not available at will

- aim is a statistically efficient use of data
- use of "good" estimators for quantities of interest

Let $\hat{\theta}$ be an estimator for a parameter θ , based on a sample x_1, \ldots, x_n

Minimal requirement: Validity of LLN and CLT:

•
$$\hat{\theta} \longrightarrow \theta$$
 for $n \longrightarrow \infty$ in probability
" $\hat{\theta}$ consistent"

• $\hat{\theta}$ for large *n* approximately normally distributed

Usually fulfilled!

Quantitatively: error $(\hat{\theta} - \theta)$ should be small!

Master of Science in Medical Biology

Criterion 1: Unbiasedness of $\hat{\theta}$

$$\mathsf{E}\left[\hat{\theta} - \theta\right] = \mathsf{0} \quad \text{or} \quad \mathsf{E}\left[\hat{\theta}\right] = \theta$$

i.e. on average you are right

If not:
$$\mathsf{E}\left[\hat{\theta} - \theta\right] = \mathsf{bias} \text{ of } \hat{\theta}$$

Examples:

- n machines that can independently fail
- failure statistic, per day: $X_i = 0$, no failure $X_i = 1$, failure

Estimator \hat{p} for failure probability p: $\hat{p} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} X_i$ $E[\hat{p}] = E\left[\frac{1}{n} \sum_{i=1}^{n} X_i\right] = \frac{1}{n} \sum_{i=1}^{n} E[X_i] = p$

Thus: no bias

Master of Science in Medical Biology

Criterion 1: Unbiasedness of $\hat{\theta}$

• With two machines: probability that both fail: naïve: $\hat{p}^2 = \bar{x}^2$,

but:

$$\begin{aligned} \mathsf{E}[\bar{x}^2] &= \mathsf{Var}(\bar{x}) + (\mathsf{E}[\bar{x}])^2 \\ &= \frac{1}{n} \mathsf{Var}(X_1) + (\mathsf{E}[X_1])^2 \\ &= \frac{p(1-p)}{n} + p^2 \end{aligned}$$

Bias = $\frac{p(1-p)}{n} \neq 0$ for finite n

Criterion 2: Minimum Variance Estimation

Create an unbiased estimator $\hat{\theta}$ such that

 $Var(\hat{\theta}) = minimal$

Unbiased estimators with minimal variance are good.

Accuracy of the mean

n independent observations with variance σ^2

$$\longrightarrow \operatorname{Var}(\bar{x}) = \frac{\sigma^2}{n}$$

Standard error of the mean

$$\sigma_{\bar{x}} = SEM = SE(\bar{x}) = \frac{\sigma}{\sqrt{n}}$$

Accuracy of fractions p

Example:

n = 80 individuals surveyed about asthma k = 7 thereof are asthmatics

$$\hat{p} = \frac{k}{n} = 0.088$$
 estimated prevalence

How accurate is p determined? Binomial distribution!

$$\sigma_{\hat{p}}^2 = \operatorname{Var}(\hat{p}) = \frac{p(1-p)}{n}$$

$$\longrightarrow s_{\hat{
ho}} = \sqrt{rac{\hat{
ho}(1-\hat{
ho})}{n}}$$

In the example with $\hat{p}=0.088$: $s_{\hat{p}}=0.032$ If $\hat{p}=0.5$: $s_{\hat{p}}=0.056$

This means, middle frequencies are more dispersed than extreme ones.

Accuracy of estimators

Variation of an estimator = standard error SE

- can be obtained from computer printouts
- conveys an impression about the accuracy of the statistic

Maximum likelihood estimation

Unbiased estimators with minimal variance do not always exist. General alternative:

Maximum likelihood estimation

- general, successful estimation principle
- algorithmic procedures exist
- theory thereto is complex
- assumption of a distribution model f(x, θ) for data is necessary to estimate parameter θ

Maximum likelihood estimation: Idea

- Given data x_1, \ldots, x_n (independent)
- **2** Probability to observe $x_1 \cong f(x_1, \theta)$
- Probability to observe x₁,..., x_n: product, since random variables x_i are independent

$$L(\theta) = f(x_1, \theta) \times f(x_2, \theta) \times \cdots \times f(x_n, \theta)$$

 $L(\theta)$ is called **likelihood function**, θ is the argument, x_i are given data

- Sor which value θ is the agreement with the data x₁,..., x_n maximal?
- Determine θ such that L(θ) is maximal ("maximum likelihood estimator" for θ)
- Mathematically often easier to maximise $\log L(\theta)$.

ML estimation: Example

Flip a coin 10 times, observe "heads" as result 4 times. How large is the probability to throw "heads" ?

Heuristically: probability $\hat{p} = 0.4$ Probability distribution for 4 times "heads" is according to binomial distribution proportional to

$$L(p) = p^4(1-p)^6$$

Maximisation:

$$\begin{split} L'(p) &= 4p^3(1-p)^6 - 6p^4(1-p)^5 = 0 \\ &\longrightarrow 4(1-p) = 6p \\ &\longrightarrow \text{maximum likelihood estimator: } \hat{p}_{ML} = 0.4 \end{split}$$

Thus? In this example plausible.

Master of Science in Medical Biology

ML estimation: Example

Sample x_1, \ldots, x_n originating from normal distribution $\mathcal{N}(\mu, \sigma^2)$

Maximum likelihood estimators for μ , σ^2 ?

$$L(\mu,\sigma^2) = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i-\mu)^2\right)$$

$$\log L(\mu, \sigma^2) = -n \log \sqrt{2\pi} - \frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum (x_i - \mu)^2$$

$$\frac{\partial \log L}{\partial \mu} = \frac{1}{\sigma^2} \sum (x_i - \mu) = 0$$
$$\longrightarrow \hat{\mu}_{ML} = \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

as known and to be expected.

Master of Science in Medical Biology

ML estimation: Example

Maximum likelihood estimators for σ^2 :

$$\frac{\partial \log L}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0$$

$$\longrightarrow \hat{\sigma}_{ML} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Attention: $\hat{\sigma}_{ML}^2 = \frac{n-1}{n} s^2$!

 s^2 is unbiased, but $\hat{\sigma}^2_{\textit{ML}}$ is not.

Properties of ML estimators

Good properties:

- **(**) ML method is never worse than any other method (for $n \rightarrow \infty$).
- In the second second
- ML estimators are consistent.
- **(**) If $\hat{\theta}$ is a ML estimator for θ , then $h(\hat{\theta})$ is a ML estimator for $h(\theta)$.
- S ML estimators are approximately normally distributed.

And the bad news?

- **(**) Many properties only asymptotically valid $(n \longrightarrow \infty)$
- One needs a parametric probability model for data, e.g. normal distribution

Where does chance come from?

- Random sample: "Drawing" of individuals from the population
- chance is not a measurement error but inter-individual variation
- Representativeness (generalisability)
- volunteers are not representative for the population of all patients
- patients from university hospitals are not representative
- Randomisation: random splitting in two or more groups
- chance arises from the computer (pseudo random) or physical random process

Where does chance come from?

Independence

- succession of patients in the hospital is random
- violated with patients from a single family,
- or, when doctors have an effect on the result (cluster)
- With repeated measurements for the same patient (pre-post comparisons, several locations, e.g. arteries or longitudinal studies) the patient is the observational unit and not the single measurement.