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Probability theory

Link between sample and population:

generalise results from sample to
the population

the population is a theoretical
- usually infinite - quantity

population mean µ

sample:

mean x

draw conclusion for 

population mean

imagine one could observe the whole population (e.g. all human
beings in the past, present and future) and handle it like a sample

postulate that we would get “true” (population-)
characteristics:

probability (≈ relative frequency; %): P
expectation (≈ mean x̄): µ

standard deviation (≈ s): σ

percentiles

needed for statistical tests and confidence intervals
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Probability theory

Intuitive:

Probability = relative frequency in the population

Formal:

Random experiment
↓

Events
↓

Probabilities
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Random experiment

An experiment or observation that can be repeated numerous times
under the same condition.

Examples:

roll a dice

flip a coin

diagnose H1N1 in a person

measure the body height of a student

roll a dice twice

measure the body height of 245 students
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Events

Sample space Ω = set of all possible results of a random experiment

Examples:

Diagnosis −→ Ω = { “sick”, “healthy”}
Roll the dice −→ Ω = {1, 2, 3, 4, 5, 6}
Body height −→ Ω = {x |x > 0}

Event A = subset of Ω

Examples:

A = {2, 4, 6} even number on the dice
A = {1}
A = {Body height > 180 cm}
A = {170 cm ≤ Body height ≤ 180 cm}
A = Ω = sure event
A = ∅ = impossible event
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Events

Elementary event ω = element of Ω

Set-theoretic operations:

A ∩ B intersection (“and”)

A ∪ B union (“or”)

Ac , Ā,¬A complement (“not A”)
Relation:

B ⊂ A (“included”)
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Probability

P(A) = relative frequency of a measurable event A in Ω

Probability can be defined formally based on:

Probability axioms

I. The probability of an event is a non-negative real number:

0 ≤ P(A) for all A ⊆ Ω

II. Unit measure: the probability that some elementary event in the
entire sample space will occur is 1: P(Ω) = 1

III. Additivity: Any countable sequence of pairwise disjoint events
A1,A2, . . . (i.e. Ai ∩ Aj = ∅ for all i 6= j) satisfies:

P(A1 ∪ A2 ∪ · · · ) =
∑

i

P(Ai).

Consequence: P(A) ≤ 1 for all A ∈ Ω
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Probability

Bonferroni inequality

P(A1 ∪ A2 ∪ · · · ∪ An) ≤
n
∑

i=1

P(Ai )

Since:

A1 A1 ∩ A2 A2

P(A1 ∪ A2) = P(A1) + P(A2)− P(A1 ∩ A2)
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Conditional probability

P(A1|A2) = Probability of some event A1, given the occurrence of
some other event A2:

P(A1|A2) =
P(A1 ∩ A2)

P(A2)

→ P(A1 ∩ A2) = P(A2) P(A1|A2)

= P(A1) P(A2|A1)

A1 A1 ∩ A2 A2

Bayes’ theorem

P(A|B) =
P(B |A) P(A)

P(B)
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Conditional probability

Law of total probability

Let {Bi : i = 1, 2, 3, . . .} be a partition of Ω
(i.e. Bi ∩ Bj = ∅ for all i , j and B1 ∪ B2 ∪ · · · ∪ Bn = Ω), then:

P(A) =
∑

i

P(A ∩ Bi)

or, alternatively,

P(A) =
∑

i

P(A|Bi ) P(Bi )

B1 B2 B3 B4

A
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Conditional probability

Definition: Independence

Two events A and B are (statistically) independent if and only if

P(A ∩ B) = P(A) P(B) or P(B |A) = P(B)

Independence:

formal simplification

application of many mathematical laws

Examples:

If a dice is rolled three times, the events of getting each time a 6
are independent:

P(three times 6) =
1

6
× 1

6
× 1

6
=

1

216
= 0.0046

If a dice is rolled three times getting at least once a 6:

P(at least one 6) = 1− P(no 6) = 1−
(

5

6

)3

=
91

216
= 0.42
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Random variable X

Function that maps an elementary event in the sample space to a real
number (Result of a random experiment).

Examples:

1 Roll the dice: Every elementary event is mapped to one of the
numbers 1, 2, 3, 4, 5, 6.
(“discrete random variable”)

2 Body height: The result is a real number.
(“continuous random variable”)

The observed value (X = x) is called realisation.

Master of Science in Medical Biology 12 / 48



Random variable X

Definition: Sample

n realisations of a random variable X of interest: x1, . . . , xn.

Events of interest and their probabilities:

P(5 < X < 6), P(X ≤ c), P(a ≤ X ≤ b),

P(X = xi), if X discrete

Example: Flip a coin

possible realizations X = 0 (heads), X = 1 (tails)
sample n = 2
distribution of number of “tails”
possible samples x1, x2: 00 01 10 11

P(X1 + X2 = 1) = P(X1 + X2 = 1|X1 = 0)P(X1 = 0)

+ P(X1 + X2 = 1|X1 = 1)P(X1 = 1)

= P(X2 = 1)P(X1 = 0) + P(X2 = 0)P(X1 = 1)

=
1

4
+

1

4
=

1

2
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Binomial distribution

sequence of n independent yes/no (1/0) experiments

P(Xi = 1) = p

K =
n
∑

i=1
Xi

all permutations of x1, . . . , xn with K = k have the same
probability

pk(1− p)n−k

number of possible permutations with exactly k successes
out of n known from combinatorics:

binomial coefficient “n choose k”
(

n

k

)

=
n!

k!(n − k)!
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Binomial distribution
probability mass function

P(X = k) =

(

n

k

)

pk(1− p)n−k 0 ≤ k ≤ n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.
00
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15  p = 0.5

 n = 20 
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Example: mean number of recovered patients p̂ = k
n

A total of n = 20 patients are examined to test whether or not a new
drug yields a probability of recovery higher than p = 0.4 (i.e. 40%).

The number k of recovered patients (k = 0 to 20 is possible) follows
a binomial distribution. If one assumes a probability of p = 0.4, the
following probability mass distribution for the number of recoveries
arises:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.
00

0.
05

0.
10

0.
15

P(k ≥ 13) = 0.021

This means that 13 or more recoveries are expected with a probability
of only 2.1%.
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Cumulative distribution function
Events of the form X ≤ x are important as everything can be
composed of them with elementary operations

Definition: Cumulative distribution function F

of a random variable X

F (x) = P(X ≤ x)
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F
(x

)

see also: empirical (cumulative) distribution function, for data
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Cumulative distribution function

Properties of F :
1 F (−∞) = 0, F (+∞) = 1
2 F monotone increasing
3 P(a < X ≤ b) = F (b)− F (a)

Percentiles of distributions are important for statistical tests.
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Cumulative distribution function

Continuous random variable (χ2
4): F continuous
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Definition: Probability density f

a) discrete variable: f (xi ) = P(X = xi )
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0.
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b) continuous variable: f (x) = F ′(x)
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x

f(
x)

Analogy: histogram
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Probability density

Properties:

1 f (x) ≥ 0

2

∫ ∞

−∞
f (t)dt = 1

3 P(a < X ≤ b) = F (b)− F (a) =

∫ b

a

f (t)dt

4 f (t)dt ≈ P(t < X ≤ t + ∆t)

(stochastic) independence of X and Y

⇐⇒ fXY (x , y) = fX (x) fY (y)
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(Population-) Characteristics of a cumulative distribution

function F or random variable X , respectively

expectation µ = E[X ] =

∫ ∞

−∞
xf (x)dx

variance σ2 = E
[

(X − E[X ])2
]

=

∫ ∞

−∞
(x − µ)2f (x)dx

standard deviation σ =

√

E
[

(X − E[X ])2
]

alpha-percentile xα F (xα) = α

If discrete:
∫

−→ sums

µ =
n
∑

i=1

xi P(X = xi)

sample characteristics = statistical estimates for population
characteristics

Master of Science in Medical Biology 22 / 48



Properties
1 Additivity of expectation:

E[X + Y ] = E[X ] + E[Y ]
2 Non-additivity of variance:

Var(X + Y ) = Var(X ) + Var(Y ) + 2Cov(X ,Y )

If X ,Y are uncorrelated (i.e. ρ = 0) −→ variance is additive
3 X ,Y independent −→ X ,Y uncorrelated

“←−” not true (but valid for normal distributions)
4 Var(c X ) = c2 Var(X )

Important consequence of (2) and (4):
X1, . . . ,Xn independent, identically distributed random variables,
variance σ2. Then:

Var

(

1

n

n
∑

i=1

Xi

)

=

n
∑

i=1

1

n2
Var(Xi ) =

σ2

n

σX = σ√
n

“Square Root of n Law”
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Important Distributions: Normal distribution N (µ, σ
2)

If µ = 0, σ2 = 1: Standard normal distribution

f (x) =
1√
2πσ

exp

(

−(x − µ)2

2σ2

)

x

F
(x

)
0.

0
0.

2
0.

4
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6
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8
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µ−2σ µ µ+2σµ−4σ µ+4σ
x
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x)
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Normal distribution N (µ, σ
2)

Properties:

Central Limit Theorem −→ omnipresent

symmetric

simple parameters µ, σ2

“light tails”

assumption for many statistical methods
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χ
2–distribution

Z1, . . . ,Zν independent N (0, 1)

χ2
ν =

ν
∑

i=1

Z 2
i χ2–distributed with ν degrees of freedom
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χ
2–distribution

Properties:

µ = ν, σ2 = 2ν

ν = 2: exponential distribution

physics: modelling energy or the like

statistics: important distribution for tests
(contingency tables, goodness–of–fit)

model for the variance of normally distributed data
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Poisson–distribution (discrete)

P(X = k) =
λk

k!
e−λ
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Poisson–distribution
Properties:

µ = λ, σ2 = λ

modelling of rare events (radioactive decay, crime rate)

Number of crimes full moon days new moon days
per day Obs Exp Obs Exp

0 40 45.2 114 112.8
1 64 63.1 56 56.4
2 56 44.3 11 14.1
3 19 20.7 4 2.4
4 1 7.1 1 0.3
5 2 2.0 0 0.0
6 0 0.5 0 0.0
7 0 0.1 0 0.0
8 0 0.0 0 0.0
9 1 0.0 0 0.0

Total number of days 183 183.0 186 186.0
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Binomial–distribution

P(X = k) =
(n

k

)

pk(1− p)n−k 0 ≤ k ≤ n

µ = n p, σ2 = n p (1− p)
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Law of Large Numbers (n −→∞)

(Always: independent random variables)

Law of large numbers (LLN)
X̄ −→ µ in “probability”
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Central limit theorem

Central limit theorem (CLT)

X̄ − µ

σX̄

−→ N (0, 1) “in distribution”
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Central limit theorem

Central limit theorem (CLT)

X̄ − µ

σX̄

−→ N (0, 1) “in distribution”
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Central limit theorem

Central limit theorem (CLT)

X̄ − µ

σX̄

−→ N (0, 1) “in distribution”
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Estimation procedures

Sample characteristics such as e.g. the mean are random,
they vary.

Trial

D
at

a

1 2 3

−
2

−
1

0
1

2

An estimator is a sample characteristic (statistic) which aims at
approximating a population characteristic (parameter).
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Estimation procedures

Studies cost money, time; data are often not available at will

aim is a statistically efficient use of data

use of “good” estimators for quantities of interest

Let θ̂ be an estimator for a parameter θ, based on a sample x1, . . . , xn

Minimal requirement: Validity of LLN and CLT:

θ̂ −→ θ for n −→∞ in probability
“θ̂ consistent”

θ̂ for large n approximately normally distributed

Usually fulfilled!

Quantitatively: error (θ̂ − θ) should be small!
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Criterion 1: Unbiasedness of θ̂

E
[

θ̂ − θ
]

= 0 or E
[

θ̂
]

= θ

i.e. on average you are right

If not: E
[

θ̂ − θ
]

= bias of θ̂

Examples:

n machines that can independently fail

failure statistic, per day: Xi = 0, no failure
Xi = 1, failure

Estimator p̂ for failure probability p: p̂ = x̄ =
1

n

n
∑

i=1

Xi

E[p̂] = E

[

1

n

n
∑

i=1

Xi

]

=
1

n

n
∑

i=1

E[Xi ] = p

Thus: no bias
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Criterion 1: Unbiasedness of θ̂

With two machines: probability that both fail:

näıve: p̂2 = x̄2,
but:

E[x̄2] = Var(x̄) + (E[x̄ ])2

=
1

n
Var(X1) + (E[X1])

2

=
p(1− p)

n
+ p2

Bias =
p(1− p)

n
6= 0 for finite n
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Criterion 2: Minimum Variance Estimation

Create an unbiased estimator θ̂ such that

Var(θ̂) = minimal

Unbiased estimators with minimal variance are good.
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Accuracy of the mean

n independent observations with variance σ2

−→ Var(x̄) =
σ2

n

Standard error of the mean

σx̄ = SEM = SE (x̄) =
σ√
n
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Accuracy of fractions p

Example:

n = 80 individuals surveyed about asthma
k = 7 thereof are asthmatics

p̂ =
k

n
= 0.088 estimated prevalence

How accurate is p determined? Binomial distribution!

σ2
p̂ = Var(p̂) =

p(1− p)

n

−→ sp̂ =

√

p̂(1− p̂)
n

In the example with p̂ = 0.088: sp̂ = 0.032
If p̂ = 0.5: sp̂ = 0.056

This means, middle frequencies are more dispersed than extreme ones.

Master of Science in Medical Biology 39 / 48



Accuracy of estimators

Variation of an estimator = standard error SE

can be obtained from computer printouts

conveys an impression about the accuracy of the statistic
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Maximum likelihood estimation

Unbiased estimators with minimal variance do not always exist.

General alternative:

Maximum likelihood estimation

general, successful estimation principle

algorithmic procedures exist

theory thereto is complex

assumption of a distribution model f (x , θ)
for data is necessary to estimate parameter θ
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Maximum likelihood estimation: Idea

1 Given data x1, . . . , xn (independent)

2 Probability to observe x1
∼= f (x1, θ)

3 Probability to observe x1, . . . , xn:
product, since random variables xi are independent

L(θ) = f (x1, θ)× f (x2, θ)× · · · × f (xn, θ)

L(θ) is called likelihood function, θ is the argument,
xi are given data

4 For which value θ is the agreement with the data x1, . . . , xn

maximal?

5 Determine θ such that L(θ) is maximal
(“maximum likelihood estimator” for θ)

6 Mathematically often easier to maximise log L(θ).
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ML estimation: Example
Flip a coin 10 times, observe “heads” as result 4 times.
How large is the probability to throw “heads” ?

Heuristically: probability p̂ = 0.4
Probability distribution for 4 times “heads” is according to binomial
distribution proportional to

L(p) = p4(1− p)6

Maximisation:

L′(p) = 4p3(1− p)6 − 6p4(1− p)5 = 0

−→ 4(1− p) = 6p

−→ maximum likelihood estimator: p̂ML = 0.4

Thus?
In this example plausible.
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ML estimation: Example

Sample x1, . . . , xn originating from normal distribution N (µ, σ2)

Maximum likelihood estimators for µ, σ2 ?

L(µ, σ2) =

(

1√
2πσ

)n

exp

(

− 1

2σ2

n
∑

i=1

(xi − µ)2

)

log L(µ, σ2) = −n log
√

2π − n

2
log σ2 − 1

2σ2

∑

(xi − µ)2

∂ log L

∂µ
=

1

σ2

∑

(xi − µ) = 0

−→ µ̂ML = x̄ =
1

n

n
∑

i=1

xi

as known and to be expected.
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ML estimation: Example

Maximum likelihood estimators for σ2 :

∂ log L

∂σ2
= − n

2σ2
+

1

2σ4

n
∑

i=1

(xi − µ)2 = 0

−→ σ̂ML =
1

n

n
∑

i=1

(xi − x̄)2

Attention: σ̂2
ML = n − 1

n s2 !

s2 is unbiased, but σ̂2
ML is not.
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Properties of ML estimators

Good properties:

1 ML method is never worse than any other method (for n −→∞).

2 ML method is applicable for most (even complex) problems.

3 ML estimators are consistent.

4 If θ̂ is a ML estimator for θ, then h(θ̂) is a ML estimator for h(θ).

5 ML estimators are approximately normally distributed.

And the bad news?

1 Many properties only asymptotically valid (n −→∞)

2 One needs a parametric probability model for data,
e.g. normal distribution
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Where does chance come from?

Random sample: “Drawing” of individuals from the population

- chance is not a measurement error but inter-individual variation

Representativeness (generalisability)

- volunteers are not representative for the population of all patients

- patients from university hospitals are not representative

Randomisation: random splitting in two or more groups

- chance arises from the computer (pseudo random) or physical
random process
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Where does chance come from?

Independence

- succession of patients in the hospital is random

- violated with patients from a single family,

- or, when doctors have an effect on the result (cluster)

With repeated measurements for the same patient (pre-post
comparisons, several locations, e.g. arteries or longitudinal
studies) the patient is the observational unit and not the single
measurement.
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